The preparation of electromagnetic(EM)wave absorption materials provided with the characteristics of thin matching thickness,broad bandwidth,and mighty absorption intensity is an efficient solution to current EM pollu...The preparation of electromagnetic(EM)wave absorption materials provided with the characteristics of thin matching thickness,broad bandwidth,and mighty absorption intensity is an efficient solution to current EM pollution.Herein,Graphene nanosheets(GN)were firstly fabricated via a facile high-energy ball milling method,subsequently high-purity 1T-MoS_(2) petals were uniformly anchored on the surface of GN to prepare 1T-MoS_(2)@GN nanocomposites.Plentiful multiple reflection and scattering of EM waves in a distinctive multidimensional structure formed by GN and 1T-MoS_(2),copious polarization loss consisting of interfacial polarization loss and dipolar polarization loss severally derived from multitudinous heterointerfaces and profuse electric dipoles in 1T-MoS_(2)@GN,and mighty conduction loss originated from plentiful induced current in 1T-MoS_(2)@GN generated via the migration of massive electrons,all of which endowed 1T-MoS_(2)@GN nanocomposites with exceptional EM wave absorption performances.The minimum reflection loss(RLmin)of 1T-MoS_(2)@GN reached–50.14 dB at a thickness of only 2.10 mm,and the effective absorption bandwidth(EAB)was up to 6.72 GHz at an ultra-thin matching thickness of 1.84 mm.Moreover,the radar scattering cross section(RCS)reduction value of 36.18 dB m2 at 0°could be achieved as well,which ulteriorly validated the tremendous potential of 1T-MoS_(2)@GN nanocomposites in practical applications.展开更多
Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_...Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.展开更多
The single-layer Ti_(3)C_(2)T_(x)/MXene has become a special electromagnetic wave absorber near the terahertz band because of its abundant surface groups and excellent conductivity.However,the macro-preparation of sin...The single-layer Ti_(3)C_(2)T_(x)/MXene has become a special electromagnetic wave absorber near the terahertz band because of its abundant surface groups and excellent conductivity.However,the macro-preparation of single-layer Ti_(3)C_(2)T_(x)/MXene shows significantly difficult to influence its application.The two-dimensional Ti_(3)C_(2)T_(x)is easily prepared to have high production,but its weak absorption ability due to high surface conductivity also restricts its application.To realize the strong electromagnetic wave absorption of two-dimensional Ti_(3)C_(2)T_(x)/MXene,a new strategy with magnetic FeNi nanoparticles decorating Ti_(3)C_(2)T_(x)/MXene composites(FeNi-Ti_(3)C_(2)T_(x))were proposed and the effective electromagnetic wave absorption features covering 170-220 GHz that means the absorption band width reach 50 GHz.With an absorber composite film thickness being only 0.6 mm,the absorptivity of the composite is enhanced with the increase of decorating FeNi nanoparticles and promote up to 75%when the FeNi nanoparticles loading content reaches 30 wt%.The improvement of absorption is attributed to the introduction of soft magnetic FeNi to adjust the high surface conductivity of MXene and improve the electromagnetic balance of the absorber.展开更多
As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires com...As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires complex processes or combinations of other ma-terials to achieve enhanced performance.In this context,a kind of gradient woodpile structure using common Ti_(3)C_(2)T_(x)-MXene as MA ma-terial was designed and manufactured through direct ink writing(DIW)3D printing.The minimum reflection loss(RL_(min))of the Ti_(3)C_(2)T_(x)-MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach-70 dB,showing considerable improve-ment compared with that of a completely filled structure.In addition,the effective absorption bandwidth(EAB)reaches 7.73 GHz.This study demonstrates that a Ti_(3)C_(2)T_(x)-MXene material with excellent MA performance and tunable frequency band can be successfully fab-ricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification,of-fering broad application prospects by reducing electromagnetic wave radiation and interference.展开更多
Carbon dioxide(CO_(2))is the predominant greenhouse gas in the Earth’s atmosphere and plays a crucial role in global warming.Given the inherent limitations of monoethanolamine absorbents in current commercial large-s...Carbon dioxide(CO_(2))is the predominant greenhouse gas in the Earth’s atmosphere and plays a crucial role in global warming.Given the inherent limitations of monoethanolamine absorbents in current commercial large-scale CO_(2)capture applications,amino acid ionic liquids(AAILs)have garnered extensive interest in this field due to their adjustable structure,low volatility,high thermal stability,and significant absorption capacity.However,the number of comprehensive reviews recently published on the CO_(2)absorption by AAILs remains limited.In addition,researchers have differing opinions on the AAILs/CO_(2)reaction mechanisms.Therefore,this review provides a thorough overview of the reaction mechanisms and structure-activity relationships associated with AAILs for CO_(2)capture.Moreover,it outlines the research advancements in pure AAILs and their mixtures,including aqueous AAILs and AAIL-organic solvent mixtures.The effects of varying ionic structures and additives on the absorption properties of AAILs are examined in detail.In conclusion,although AAILs exhibit high CO_(2)absorption loading and possess numerous appealing characteristics,further research is essential to comprehensively evaluate their viability for large-scale CO_(2)capture from flue gas.展开更多
Heterojunction and morphology control assume a significant part in adjusting the intrinsic electromagnetic properties of absorbers to acquire outstanding microwave absorption(MA)performance,but this still faces huge c...Heterojunction and morphology control assume a significant part in adjusting the intrinsic electromagnetic properties of absorbers to acquire outstanding microwave absorption(MA)performance,but this still faces huge challenges.Herein,FeS_(2)/C/MoS_(2)composite with core–shell structure was successfully designed and prepared via a multi-interface engineering.MoS_(2)nanosheets with 1T and 2H phases are coated on the outside of FeS_(2)/C to form a porous interconnected structure that can optimize the impedance matching characteristics and strengthen the interfacial polarization loss capacity.Remarkably,as-fabricated FCM-3 harvests a broad effective absorption bandwidth(EAB)of 5.12 GHz and a minimum reflection loss(RL_(min))value of-45.1 d B.Meanwhile,FCM-3 can accomplish a greatest radar cross section(RCS)reduction value of 18.52 d B m^(2)when the detection angle is 0°.Thus,the convenient computer simulation technology(CST)simulations and encouraging accomplishments provide a novel avenue for the further development of efficient and lightweight MA materials.展开更多
Insight into exciton dynamics of two-dimensional(2D)transition metal dichalcogenides(TMDs)is critical for the optimization of their performance in photonic and optoelectronic devices.Although current researches have p...Insight into exciton dynamics of two-dimensional(2D)transition metal dichalcogenides(TMDs)is critical for the optimization of their performance in photonic and optoelectronic devices.Although current researches have primarily concentrated on the near-resonant excitation scenario in 2D TMDs,the case of excitation energies resonating with highenergy excitons or higher energies has yet to be fully elucidated.Here,a comparative analysis is conducted between highenergy excitation(360 nm)and near-resonant excitation(515 nm)utilizing transient absorption spectroscopy to achieve a comprehensive understanding of the exciton dynamics within monolayer WS_(2).It is observed that the high-energy C-exciton can be generated via an up-conversion process under 515 nm excitation,even the energy of which is less than that of the C-exciton.Furthermore,the capacity to efficiently occupy band-edge A-exciton states leads to longer lifetimes for both the C-excitons and the A-excitons under conditions of near-resonant excitation,accompanied by an augmented rate of radiative recombination.This study provides a paradigm for optimizing the performance of 2D TMDs-based devices by offering valuable insights into their exciton dynamics.展开更多
In recent years,two-dimensional layered transition metal dichalcogenides-based multicomponent com-posites(MCCs)acting as electromagnetic wave(EMW)materials have received intensive investiga-tions.However,the vulcanica...In recent years,two-dimensional layered transition metal dichalcogenides-based multicomponent com-posites(MCCs)acting as electromagnetic wave(EMW)materials have received intensive investiga-tions.However,the vulcanication of metal greatly hindered their enhancement of EMW absorption per-formances(EMWAPs).Herein,a combined metal-organic frameworks-derived and hydrothermal strat-egy was presented to produce yolk-shell structure(YSS)CoNi@Air@C@MoS_(2) MCCs.The results showed that the thermal and hydrothermal treatments resulted in the generation of YSS and two-dimensional MoS_(2) nanosheets,which maintained the original morphology of CoNi Prussian blue analogues.The pro-tection of thick C layer well inhibited the vulcanization of inner CoNi alloy.The formed sheet-like MoS_(2) further optimized impedance matching characteristics,which led to the satisfactory EMWAPs of CoNi@Air@C@MoS_(2) MCCs.Furthermore,the EMWAPs could be further improved by optimizing the Ni:Co atom ratios CoNi@Air@C@MoS_(2) MCCs,which stemmed from their boosted impedance matching perfor-mances,EMW attention and polarization loss abilities.The absorption bandwidth and reflection loss val-ues for YSS CoNi@Air@C@MoS_(2) MCCs are 8 GHz and−60.83 dB,which covered almost all C-Ku bands.In general,our research work provided a valid strategy to produce YSS magnetic CoNi@Air@C@MoS_(2) MCCs with high efficiency,which well avoided the vulcanization of metal nanoparticles,made best of hollow engineering and atomic ratio optimization strategy to boost the comprehensive EMWAPs.展开更多
The magnetic loss plays a key role in electromagnetic waves(EMW)absorption.However,the magnetic loss ability would obviously draw at high frequency,and the component lacks the dielectric loss ability,resulting in poor...The magnetic loss plays a key role in electromagnetic waves(EMW)absorption.However,the magnetic loss ability would obviously draw at high frequency,and the component lacks the dielectric loss ability,resulting in poor EMW absorption.In this work,we design a core-shell-structured Fe@Sm_(2)Fe_(17)dual magnetic nanoparticle.The 200-nm Sm_(2)Fe_(17)nanoparticles play a key role in maintaining relatively high magnetic loss ability even at high frequency.And the introduction of 3-μm Fe cubes can optimize the dielectric parameters by the interface polarization and thus enhance the impedance matching.Meanwhile,Fe cubes with easy axis vertical to six planes can absorb the EMW with different directions,leading to the enhancement of the EMW attenuation.Especially,the Fe cubes can align the moment of Sm_(2)Fe_(17)nanoparticles,which can increase exchange-coupling interaction between them to further improve the magnetic loss capacity and broaden the effective absorption bandwidth(EAB).Furthermore,the small-sized Sm_(2)Fe_(17)nanoparticles provide a rough surface,which promotes multiple reflections and scattering of the incident EMW.As a result,the optimal EMW attenuation performance with a minimum reflection loss exceeding-51.4 dB and a broadened EAB up to 6.6 GHz at 1.4 mm was achieved in Fe@Sm_(2)Fe_(17)composites with Sm/Fe of 1:12.Our work provides profound insights into developing well-coordinated magnetic-dielectric nanocomposites for EMW absorption engineering.展开更多
The effective construction of electromagnetic(EM)wave absorption materials with thin matching thickness,broad bandwidth,and remarkable absorption is a great solution to EM pollution,which is a hot topic in current env...The effective construction of electromagnetic(EM)wave absorption materials with thin matching thickness,broad bandwidth,and remarkable absorption is a great solution to EM pollution,which is a hot topic in current environmental governance.In this study,N-doped reduced graphene oxide(N-rGO)was first prepared using a facile hydrothermal method.Then,high-purity 1T-MoS_(2)petals were homogeneously anchored to the wrinkled surface of N-rGO to fabricate 1T-MoS_(2)@N-rGO nanocomposites.The numerous electric di-poles and profuse heterointerfaces in 1T-MoS_(2)@N-rGO would induced the multiple reflection and scattering of EM waves in a distinct-ive multidimensional structure formed by two-dimensional N-rGO and 1T-MoS_(2)microspheres with plentiful thin nanosheets,remarkable conduction loss derived from the migration of massive electrons in a well-constructed conductive network formed by 1T-MoS_(2)@N-rGO,and abundant polarization loss(including dipolar polarization loss and interfacial polarization loss).All of these gave the 1T-MoS_(2)@N-rGO nanocomposites superior EM wave absorption performances.The effective absorption bandwidth of 1T-MoS_(2)@N-rGO reached 6.48 GHz with a relatively thin matching thickness of 1.84 mm,and a minimum reflection loss of-52.24 dB was achieved at 3.84 mm.Additionally,the radar scattering cross-section reduction value of 1T-MoS_(2)@N-rGO was up to 35.42 dB·m^(2) at 0°,which further verified the huge potential of our fabricated 1T-MoS_(2)@N-rGO nanocomposites in practical applications.展开更多
A comprehensive computational fluid dynamics(CFD) model is developed based on the gas-liquid two-phase hydrodynamics,gas-liquid mass-transfer theory and chemical reaction kinetics,and the ammonia-based CO2 absorptio...A comprehensive computational fluid dynamics(CFD) model is developed based on the gas-liquid two-phase hydrodynamics,gas-liquid mass-transfer theory and chemical reaction kinetics,and the ammonia-based CO2 absorption in a spray column is numerically studied.The Euler-Lagrange model is applied to describe the behavior of gas-liquid twophase flowand heat transfer.The dual-film theory and related correlations are adopted to model the gas-liquid mass transfer and chemical absorption process.The volatilization model of multi-component droplet is utilized to account for ammonia slippage.The effect of operation parameters on CO2 removal efficiency is numerically studied.The results showa good agreement with the previous experimental data,proving the validity of the proposed model.The profile studies of gasphase velocity and CO2 concentration suggest that the flowfield has a significant impact on the CO2 concentration field.Also,the local CO2 absorption rate is influenced by both local turbulence and the local liquid-gas ratio.Furthermore,the velocity field of gas phase is optimized by the method of adjusting the orifice plate,and the results showthat the CO2 removal efficiency is improved by approximately 4%.展开更多
The carbon dioxide (CO2) removal efficiency, reaction rate, and CO2 loading into aqueous blended monoethanolamine (MEA) + 2-amino-2-methyl-l-propanol (AMP) solutions to enhance absorption characteristics of MEA...The carbon dioxide (CO2) removal efficiency, reaction rate, and CO2 loading into aqueous blended monoethanolamine (MEA) + 2-amino-2-methyl-l-propanol (AMP) solutions to enhance absorption characteristics of MEA and AMP were carried out by the absorption/regeneration process. As a result, compared to aqueous MEA and AMP solutions, aqueous blended MEA + AMP solutions have a higher CO2 loading than MEA and a higher reaction rate than AMP. The CO2 loading of rich amine of aqueous 18 wt.% MEA + 12 wt.% AMP solution was 0.62 mol CO2/mol amine, which is 51.2% more than 30 wt.% MEA (0.41 mol CO2/mol amine). Consequently, blending MEA and AMP could be an effective way to design considering economical efficiency and used to operate absorber for a long time.展开更多
A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phospho...A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phosphorescence(RTP)properties,was prepared by doping 2,6-naphthalic acid(P)into matrix1at a low con-centration.P@1emitted a green RTP that was visible to the naked eye and lasted for approximately 2 s.P@1exhib-ited selective phosphorescence enhancement response towards Pb^(2+),with a detection limit of 2.52μmol·L^(-1).Themain detection mechanism is the Pb—O coordination-induced phosphorescence enhancement in the system.Inter-estingly,P@1also functioned as a dual-channel probe for the rapid detection of Fe^(3+)ions through fluorescencequenching with a detection limit of 0.038μmol·L^(-1).The recognition mechanism may be attributed to the competi-tive energy absorption betweenP@1and Fe^(3+)ions.CCDC:2388502,1.展开更多
基金supported by the PhD Start-up Fund of the Science and Technology Department of Liaoning Province(No.2022-BS-306)the General Cultivation Scientific Research Project of Bohai University(No.0522xn058)the PhD Research Startup Foundation of Bohai University(No.0521bs021).
文摘The preparation of electromagnetic(EM)wave absorption materials provided with the characteristics of thin matching thickness,broad bandwidth,and mighty absorption intensity is an efficient solution to current EM pollution.Herein,Graphene nanosheets(GN)were firstly fabricated via a facile high-energy ball milling method,subsequently high-purity 1T-MoS_(2) petals were uniformly anchored on the surface of GN to prepare 1T-MoS_(2)@GN nanocomposites.Plentiful multiple reflection and scattering of EM waves in a distinctive multidimensional structure formed by GN and 1T-MoS_(2),copious polarization loss consisting of interfacial polarization loss and dipolar polarization loss severally derived from multitudinous heterointerfaces and profuse electric dipoles in 1T-MoS_(2)@GN,and mighty conduction loss originated from plentiful induced current in 1T-MoS_(2)@GN generated via the migration of massive electrons,all of which endowed 1T-MoS_(2)@GN nanocomposites with exceptional EM wave absorption performances.The minimum reflection loss(RLmin)of 1T-MoS_(2)@GN reached–50.14 dB at a thickness of only 2.10 mm,and the effective absorption bandwidth(EAB)was up to 6.72 GHz at an ultra-thin matching thickness of 1.84 mm.Moreover,the radar scattering cross section(RCS)reduction value of 36.18 dB m2 at 0°could be achieved as well,which ulteriorly validated the tremendous potential of 1T-MoS_(2)@GN nanocomposites in practical applications.
基金financially supported by the Key Project of Natural Science Research in Colleges and Universities of Anhui Province,China(No.2022AH050816)the Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining(Nos.EC2023013 and EC2022018)+1 种基金the National Natural Science Foundation of China(No.52200139)the Introduction of Talent in Anhui University of Science and Technology,China(Nos.2021yjrc18 and 2023yjrc79)。
文摘Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.
基金supported by the National Key R&D Program of China(Nos.2023YFF0718303 and 2022YFB3504804)the National Natural Science Foundation of China(Nos.51871219,52031014 and 52401255)the Science and Technology Project of Shenyang City(No.22-101-0-27).
文摘The single-layer Ti_(3)C_(2)T_(x)/MXene has become a special electromagnetic wave absorber near the terahertz band because of its abundant surface groups and excellent conductivity.However,the macro-preparation of single-layer Ti_(3)C_(2)T_(x)/MXene shows significantly difficult to influence its application.The two-dimensional Ti_(3)C_(2)T_(x)is easily prepared to have high production,but its weak absorption ability due to high surface conductivity also restricts its application.To realize the strong electromagnetic wave absorption of two-dimensional Ti_(3)C_(2)T_(x)/MXene,a new strategy with magnetic FeNi nanoparticles decorating Ti_(3)C_(2)T_(x)/MXene composites(FeNi-Ti_(3)C_(2)T_(x))were proposed and the effective electromagnetic wave absorption features covering 170-220 GHz that means the absorption band width reach 50 GHz.With an absorber composite film thickness being only 0.6 mm,the absorptivity of the composite is enhanced with the increase of decorating FeNi nanoparticles and promote up to 75%when the FeNi nanoparticles loading content reaches 30 wt%.The improvement of absorption is attributed to the introduction of soft magnetic FeNi to adjust the high surface conductivity of MXene and improve the electromagnetic balance of the absorber.
基金support from the National Key Research and Development Program of China(No.2021YFB3701503)the Key Research and Development Program of Ningbo,China(No.2023Z107).
文摘As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires complex processes or combinations of other ma-terials to achieve enhanced performance.In this context,a kind of gradient woodpile structure using common Ti_(3)C_(2)T_(x)-MXene as MA ma-terial was designed and manufactured through direct ink writing(DIW)3D printing.The minimum reflection loss(RL_(min))of the Ti_(3)C_(2)T_(x)-MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach-70 dB,showing considerable improve-ment compared with that of a completely filled structure.In addition,the effective absorption bandwidth(EAB)reaches 7.73 GHz.This study demonstrates that a Ti_(3)C_(2)T_(x)-MXene material with excellent MA performance and tunable frequency band can be successfully fab-ricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification,of-fering broad application prospects by reducing electromagnetic wave radiation and interference.
基金supported by the Natural Science Foundation of Shanghai(Grant No.24ZR1426200)the support from the Key Program of the National Natural Science Foundation of China(Grant No.52236004)。
文摘Carbon dioxide(CO_(2))is the predominant greenhouse gas in the Earth’s atmosphere and plays a crucial role in global warming.Given the inherent limitations of monoethanolamine absorbents in current commercial large-scale CO_(2)capture applications,amino acid ionic liquids(AAILs)have garnered extensive interest in this field due to their adjustable structure,low volatility,high thermal stability,and significant absorption capacity.However,the number of comprehensive reviews recently published on the CO_(2)absorption by AAILs remains limited.In addition,researchers have differing opinions on the AAILs/CO_(2)reaction mechanisms.Therefore,this review provides a thorough overview of the reaction mechanisms and structure-activity relationships associated with AAILs for CO_(2)capture.Moreover,it outlines the research advancements in pure AAILs and their mixtures,including aqueous AAILs and AAIL-organic solvent mixtures.The effects of varying ionic structures and additives on the absorption properties of AAILs are examined in detail.In conclusion,although AAILs exhibit high CO_(2)absorption loading and possess numerous appealing characteristics,further research is essential to comprehensively evaluate their viability for large-scale CO_(2)capture from flue gas.
基金financially supported by the National Natural Science Foundation of China(Nos.52402354,62174016 and 12374394)China Postdoctoral Science Foundation(Nos.2023M740471)the Natural Science Foundation of Jiangsu Higher Education Institutions(Nos.24KJB430002)。
文摘Heterojunction and morphology control assume a significant part in adjusting the intrinsic electromagnetic properties of absorbers to acquire outstanding microwave absorption(MA)performance,but this still faces huge challenges.Herein,FeS_(2)/C/MoS_(2)composite with core–shell structure was successfully designed and prepared via a multi-interface engineering.MoS_(2)nanosheets with 1T and 2H phases are coated on the outside of FeS_(2)/C to form a porous interconnected structure that can optimize the impedance matching characteristics and strengthen the interfacial polarization loss capacity.Remarkably,as-fabricated FCM-3 harvests a broad effective absorption bandwidth(EAB)of 5.12 GHz and a minimum reflection loss(RL_(min))value of-45.1 d B.Meanwhile,FCM-3 can accomplish a greatest radar cross section(RCS)reduction value of 18.52 d B m^(2)when the detection angle is 0°.Thus,the convenient computer simulation technology(CST)simulations and encouraging accomplishments provide a novel avenue for the further development of efficient and lightweight MA materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.12474421 and 12104066)the Fund from Education Department of Jilin Province(Grant Nos.JJKH20250473KJ and JJKH20241413KJ)the Fund from Department of Science and Technology of Jilin Province(Grant No.YDZJ202101ZYTS041)。
文摘Insight into exciton dynamics of two-dimensional(2D)transition metal dichalcogenides(TMDs)is critical for the optimization of their performance in photonic and optoelectronic devices.Although current researches have primarily concentrated on the near-resonant excitation scenario in 2D TMDs,the case of excitation energies resonating with highenergy excitons or higher energies has yet to be fully elucidated.Here,a comparative analysis is conducted between highenergy excitation(360 nm)and near-resonant excitation(515 nm)utilizing transient absorption spectroscopy to achieve a comprehensive understanding of the exciton dynamics within monolayer WS_(2).It is observed that the high-energy C-exciton can be generated via an up-conversion process under 515 nm excitation,even the energy of which is less than that of the C-exciton.Furthermore,the capacity to efficiently occupy band-edge A-exciton states leads to longer lifetimes for both the C-excitons and the A-excitons under conditions of near-resonant excitation,accompanied by an augmented rate of radiative recombination.This study provides a paradigm for optimizing the performance of 2D TMDs-based devices by offering valuable insights into their exciton dynamics.
基金supported by the Guizhou Provincial Science and Technology Projects for Platform and Talent Team Plan(No.GCC[2023]007)the Innovation Group of Guizhou University(No.[2024]08)+1 种基金Fok Ying Tung Education Foundation(No.171095)the National Natural Science Foundation of China(No.11964006).
文摘In recent years,two-dimensional layered transition metal dichalcogenides-based multicomponent com-posites(MCCs)acting as electromagnetic wave(EMW)materials have received intensive investiga-tions.However,the vulcanication of metal greatly hindered their enhancement of EMW absorption per-formances(EMWAPs).Herein,a combined metal-organic frameworks-derived and hydrothermal strat-egy was presented to produce yolk-shell structure(YSS)CoNi@Air@C@MoS_(2) MCCs.The results showed that the thermal and hydrothermal treatments resulted in the generation of YSS and two-dimensional MoS_(2) nanosheets,which maintained the original morphology of CoNi Prussian blue analogues.The pro-tection of thick C layer well inhibited the vulcanization of inner CoNi alloy.The formed sheet-like MoS_(2) further optimized impedance matching characteristics,which led to the satisfactory EMWAPs of CoNi@Air@C@MoS_(2) MCCs.Furthermore,the EMWAPs could be further improved by optimizing the Ni:Co atom ratios CoNi@Air@C@MoS_(2) MCCs,which stemmed from their boosted impedance matching perfor-mances,EMW attention and polarization loss abilities.The absorption bandwidth and reflection loss val-ues for YSS CoNi@Air@C@MoS_(2) MCCs are 8 GHz and−60.83 dB,which covered almost all C-Ku bands.In general,our research work provided a valid strategy to produce YSS magnetic CoNi@Air@C@MoS_(2) MCCs with high efficiency,which well avoided the vulcanization of metal nanoparticles,made best of hollow engineering and atomic ratio optimization strategy to boost the comprehensive EMWAPs.
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3505900)
文摘The magnetic loss plays a key role in electromagnetic waves(EMW)absorption.However,the magnetic loss ability would obviously draw at high frequency,and the component lacks the dielectric loss ability,resulting in poor EMW absorption.In this work,we design a core-shell-structured Fe@Sm_(2)Fe_(17)dual magnetic nanoparticle.The 200-nm Sm_(2)Fe_(17)nanoparticles play a key role in maintaining relatively high magnetic loss ability even at high frequency.And the introduction of 3-μm Fe cubes can optimize the dielectric parameters by the interface polarization and thus enhance the impedance matching.Meanwhile,Fe cubes with easy axis vertical to six planes can absorb the EMW with different directions,leading to the enhancement of the EMW attenuation.Especially,the Fe cubes can align the moment of Sm_(2)Fe_(17)nanoparticles,which can increase exchange-coupling interaction between them to further improve the magnetic loss capacity and broaden the effective absorption bandwidth(EAB).Furthermore,the small-sized Sm_(2)Fe_(17)nanoparticles provide a rough surface,which promotes multiple reflections and scattering of the incident EMW.As a result,the optimal EMW attenuation performance with a minimum reflection loss exceeding-51.4 dB and a broadened EAB up to 6.6 GHz at 1.4 mm was achieved in Fe@Sm_(2)Fe_(17)composites with Sm/Fe of 1:12.Our work provides profound insights into developing well-coordinated magnetic-dielectric nanocomposites for EMW absorption engineering.
基金supported by the PhD Start-up Fund of Science and Technology Department of Liaoning Province,China(No.2022-BS-306)the General Cultivation Scientific Research Project of Bohai University,China(No.0522xn058)+2 种基金the PhD Research Startup Foundation of Bohai University,China(No.0521bs021)the Youth Project of Natural Science Foundation of Hunan Province,China(No.2022JJ40338)the Scientific Research Youth Project by Education Department of Hunan Province,China(No.22B0556).
文摘The effective construction of electromagnetic(EM)wave absorption materials with thin matching thickness,broad bandwidth,and remarkable absorption is a great solution to EM pollution,which is a hot topic in current environmental governance.In this study,N-doped reduced graphene oxide(N-rGO)was first prepared using a facile hydrothermal method.Then,high-purity 1T-MoS_(2)petals were homogeneously anchored to the wrinkled surface of N-rGO to fabricate 1T-MoS_(2)@N-rGO nanocomposites.The numerous electric di-poles and profuse heterointerfaces in 1T-MoS_(2)@N-rGO would induced the multiple reflection and scattering of EM waves in a distinct-ive multidimensional structure formed by two-dimensional N-rGO and 1T-MoS_(2)microspheres with plentiful thin nanosheets,remarkable conduction loss derived from the migration of massive electrons in a well-constructed conductive network formed by 1T-MoS_(2)@N-rGO,and abundant polarization loss(including dipolar polarization loss and interfacial polarization loss).All of these gave the 1T-MoS_(2)@N-rGO nanocomposites superior EM wave absorption performances.The effective absorption bandwidth of 1T-MoS_(2)@N-rGO reached 6.48 GHz with a relatively thin matching thickness of 1.84 mm,and a minimum reflection loss of-52.24 dB was achieved at 3.84 mm.Additionally,the radar scattering cross-section reduction value of 1T-MoS_(2)@N-rGO was up to 35.42 dB·m^(2) at 0°,which further verified the huge potential of our fabricated 1T-MoS_(2)@N-rGO nanocomposites in practical applications.
基金The National Natural Science Foundation of China(No.51276038)
文摘A comprehensive computational fluid dynamics(CFD) model is developed based on the gas-liquid two-phase hydrodynamics,gas-liquid mass-transfer theory and chemical reaction kinetics,and the ammonia-based CO2 absorption in a spray column is numerically studied.The Euler-Lagrange model is applied to describe the behavior of gas-liquid twophase flowand heat transfer.The dual-film theory and related correlations are adopted to model the gas-liquid mass transfer and chemical absorption process.The volatilization model of multi-component droplet is utilized to account for ammonia slippage.The effect of operation parameters on CO2 removal efficiency is numerically studied.The results showa good agreement with the previous experimental data,proving the validity of the proposed model.The profile studies of gasphase velocity and CO2 concentration suggest that the flowfield has a significant impact on the CO2 concentration field.Also,the local CO2 absorption rate is influenced by both local turbulence and the local liquid-gas ratio.Furthermore,the velocity field of gas phase is optimized by the method of adjusting the orifice plate,and the results showthat the CO2 removal efficiency is improved by approximately 4%.
基金supported by Korea Ministry of Environment (MOE) as "Human Resource Development Project for Waste to Energy"
文摘The carbon dioxide (CO2) removal efficiency, reaction rate, and CO2 loading into aqueous blended monoethanolamine (MEA) + 2-amino-2-methyl-l-propanol (AMP) solutions to enhance absorption characteristics of MEA and AMP were carried out by the absorption/regeneration process. As a result, compared to aqueous MEA and AMP solutions, aqueous blended MEA + AMP solutions have a higher CO2 loading than MEA and a higher reaction rate than AMP. The CO2 loading of rich amine of aqueous 18 wt.% MEA + 12 wt.% AMP solution was 0.62 mol CO2/mol amine, which is 51.2% more than 30 wt.% MEA (0.41 mol CO2/mol amine). Consequently, blending MEA and AMP could be an effective way to design considering economical efficiency and used to operate absorber for a long time.
文摘A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phosphorescence(RTP)properties,was prepared by doping 2,6-naphthalic acid(P)into matrix1at a low con-centration.P@1emitted a green RTP that was visible to the naked eye and lasted for approximately 2 s.P@1exhib-ited selective phosphorescence enhancement response towards Pb^(2+),with a detection limit of 2.52μmol·L^(-1).Themain detection mechanism is the Pb—O coordination-induced phosphorescence enhancement in the system.Inter-estingly,P@1also functioned as a dual-channel probe for the rapid detection of Fe^(3+)ions through fluorescencequenching with a detection limit of 0.038μmol·L^(-1).The recognition mechanism may be attributed to the competi-tive energy absorption betweenP@1and Fe^(3+)ions.CCDC:2388502,1.