The index of payback period of dynamic investment is an improvement on index of payback period of static investment, which is the problem that the rules to evaluate the project are feasible or not. This paper proves t...The index of payback period of dynamic investment is an improvement on index of payback period of static investment, which is the problem that the rules to evaluate the project are feasible or not. This paper proves that rules shall be apt when using payback period of dynamic investment to evaluate the project feasibility under the condition of keeping the dynamic evaluation index to evaluate the same scheme and the consistent feasibility.展开更多
Energy access remains a critical challenge in rural South Sudan,with communities heavily relying on expensive and unfriendly environmental energy sources such as diesel generators and biomass.This study addresses the ...Energy access remains a critical challenge in rural South Sudan,with communities heavily relying on expensive and unfriendly environmental energy sources such as diesel generators and biomass.This study addresses the predicament by evaluating the feasibility of renewable energy-based decentralized electrification in the selected village ofDoleibHill,UpperNile,South Sudan.Using a demand assessment and theMulti-Tier Framework(MTF)approach,it categorizes households,public facilities,private sector,Non-GovernmentalOrganizations(NGOs)and business energy needs and designs an optimized hybrid energy system incorporating solar Photovoltaic(PV),wind turbines,batteries,and a generator.The proposed system,simulated in Hybrid Optimization Model Electric Renewable(HOMER)Pro,demonstrates strong economic viability,with a present worth of$292,145,an annual worth of$22,854,a return on investment(ROI)of 36.5%,and an internal rate of return(IRR)of 42.1%.The simple payback period is 2.31 years,and the discounted payback period is 2.62 years.The system achieves a levelized cost of energy(LCOE)of$0.276/kWh and significantly reduces dependence on diesel,producing 798,800 kWh annually fromwind energy.This research provides a replicable model for cost-effective,sustainable rural electrification,offering valuable insights for policymakers and energy planners seeking to expand electricity access in off-grid communities.展开更多
This research investigates the design and optimization of a photovoltaic(PV)water pumping system to address seasonal water demands across five locations with varying elevation heads.The systemdraws water froma deep we...This research investigates the design and optimization of a photovoltaic(PV)water pumping system to address seasonal water demands across five locations with varying elevation heads.The systemdraws water froma deep well with a static water level of 30mand a dynamic level of 50m,serving agricultural and livestock needs.The objective of this study is to accurately size a PV system that balances energy generation and demand while minimizing grid dependency.Meanwhile,the study presents a comprehensivemethodology to calculate flowrates,pumping power,daily energy consumption,and system capacity.Therefore,the PV system rating,energy output,and economic performance were evaluated using metrics such as discounted payback period(DPP),net present value(NPV),and sensitivity analysis.The results show that a 2.74 kWp PV system is optimal,producing 4767 kWh/year to meet the system’s annual energy demand of 4686 kWh.In summer,energy demand peaks at 1532.7 kWh,while in winter,it drops to 692.1 kWh.Meanwhile,flow rates range from 11.71 m^(3)/h at 57 m head to 10.49 m^(3)/h at 70 m head,demonstrating the system’s adaptability to diverse hydraulic conditions.Economic analysis reveals that at a 5%interest rate and an electricity price of$0.15/kWh,the NPV is$6981.82 with a DPP of 3.76 years.However,a 30%increase in electricity prices improves the NPV to$10,005.18 and shortens the DPP to 2.76 years,whereas a 20%interest rate reduces the NPV to$1038.79 and extends the DPP to 6.08 years.Nevertheless,the annual PV energy generation exceeds total energy demand by 81 kWh,reducing grid dependency and lowering electricity costs.Additionally,the PV system avoids approximately 3956.6 kg of CO_(2) emissions annually,underscoring its environmental benefits over traditional pumping systems.As a result,this study highlights the economic and environmental viability of PV-powered water pumping systems,offering actionable insights for sustainable energy solutions in agriculture.展开更多
There is a need for more focus in understanding the economic benefits of Climate-Smart Agriculture(CSA)interventions,particularly in sub-Saharan Africa,where extreme climate events are significantly affecting agricult...There is a need for more focus in understanding the economic benefits of Climate-Smart Agriculture(CSA)interventions,particularly in sub-Saharan Africa,where extreme climate events are significantly affecting agriculture and rural livelihoods.This study used the Net Present Value(NPV),Internal Rate of Return(IRR),Benefit-Cost Ratio(BCR),and payback period to evaluate the economic viability of the adopted CSA interventions in the three villages(Doggoh,Jeffiri,and Wulling)of the dryland farming systems of northern Ghana,where CSA interventions were mostly practiced.Data were collected from 161 farm households by the questionnaire survey.The results showed that CSA interventions including livestock-crop integration,mixed cropping,crop rotation,nutrient integration,and tie ridging enhanced crop yield and the household income of smallholder farmers.The five CSA interventions selected by smallholders were in the following order of priority:livestock-crop integration(BCR=2.87),mixed cropping(BCR=2.54),crop rotation(BCR=2.24),nutrient integration(BCR=1.98),and tie ridging(BCR=1.42).Results further showed that livestock-crop integration was the most profitable CSA intervention even under a pessimistic assumption with a long payback period of 5.00 a.Moreover,this study indicated that the implementation of CSA interventions,on average,was relatively profitable and had a nominal financial risk for smallholder farmers.Understanding the economic viability of CSA interventions will help in decision-making process toward selecting the right CSA interventions for resilience development.展开更多
基金This paper is supported by the National Natural Science Foundation of China (No.59579029)
文摘The index of payback period of dynamic investment is an improvement on index of payback period of static investment, which is the problem that the rules to evaluate the project are feasible or not. This paper proves that rules shall be apt when using payback period of dynamic investment to evaluate the project feasibility under the condition of keeping the dynamic evaluation index to evaluate the same scheme and the consistent feasibility.
文摘Energy access remains a critical challenge in rural South Sudan,with communities heavily relying on expensive and unfriendly environmental energy sources such as diesel generators and biomass.This study addresses the predicament by evaluating the feasibility of renewable energy-based decentralized electrification in the selected village ofDoleibHill,UpperNile,South Sudan.Using a demand assessment and theMulti-Tier Framework(MTF)approach,it categorizes households,public facilities,private sector,Non-GovernmentalOrganizations(NGOs)and business energy needs and designs an optimized hybrid energy system incorporating solar Photovoltaic(PV),wind turbines,batteries,and a generator.The proposed system,simulated in Hybrid Optimization Model Electric Renewable(HOMER)Pro,demonstrates strong economic viability,with a present worth of$292,145,an annual worth of$22,854,a return on investment(ROI)of 36.5%,and an internal rate of return(IRR)of 42.1%.The simple payback period is 2.31 years,and the discounted payback period is 2.62 years.The system achieves a levelized cost of energy(LCOE)of$0.276/kWh and significantly reduces dependence on diesel,producing 798,800 kWh annually fromwind energy.This research provides a replicable model for cost-effective,sustainable rural electrification,offering valuable insights for policymakers and energy planners seeking to expand electricity access in off-grid communities.
文摘This research investigates the design and optimization of a photovoltaic(PV)water pumping system to address seasonal water demands across five locations with varying elevation heads.The systemdraws water froma deep well with a static water level of 30mand a dynamic level of 50m,serving agricultural and livestock needs.The objective of this study is to accurately size a PV system that balances energy generation and demand while minimizing grid dependency.Meanwhile,the study presents a comprehensivemethodology to calculate flowrates,pumping power,daily energy consumption,and system capacity.Therefore,the PV system rating,energy output,and economic performance were evaluated using metrics such as discounted payback period(DPP),net present value(NPV),and sensitivity analysis.The results show that a 2.74 kWp PV system is optimal,producing 4767 kWh/year to meet the system’s annual energy demand of 4686 kWh.In summer,energy demand peaks at 1532.7 kWh,while in winter,it drops to 692.1 kWh.Meanwhile,flow rates range from 11.71 m^(3)/h at 57 m head to 10.49 m^(3)/h at 70 m head,demonstrating the system’s adaptability to diverse hydraulic conditions.Economic analysis reveals that at a 5%interest rate and an electricity price of$0.15/kWh,the NPV is$6981.82 with a DPP of 3.76 years.However,a 30%increase in electricity prices improves the NPV to$10,005.18 and shortens the DPP to 2.76 years,whereas a 20%interest rate reduces the NPV to$1038.79 and extends the DPP to 6.08 years.Nevertheless,the annual PV energy generation exceeds total energy demand by 81 kWh,reducing grid dependency and lowering electricity costs.Additionally,the PV system avoids approximately 3956.6 kg of CO_(2) emissions annually,underscoring its environmental benefits over traditional pumping systems.As a result,this study highlights the economic and environmental viability of PV-powered water pumping systems,offering actionable insights for sustainable energy solutions in agriculture.
文摘There is a need for more focus in understanding the economic benefits of Climate-Smart Agriculture(CSA)interventions,particularly in sub-Saharan Africa,where extreme climate events are significantly affecting agriculture and rural livelihoods.This study used the Net Present Value(NPV),Internal Rate of Return(IRR),Benefit-Cost Ratio(BCR),and payback period to evaluate the economic viability of the adopted CSA interventions in the three villages(Doggoh,Jeffiri,and Wulling)of the dryland farming systems of northern Ghana,where CSA interventions were mostly practiced.Data were collected from 161 farm households by the questionnaire survey.The results showed that CSA interventions including livestock-crop integration,mixed cropping,crop rotation,nutrient integration,and tie ridging enhanced crop yield and the household income of smallholder farmers.The five CSA interventions selected by smallholders were in the following order of priority:livestock-crop integration(BCR=2.87),mixed cropping(BCR=2.54),crop rotation(BCR=2.24),nutrient integration(BCR=1.98),and tie ridging(BCR=1.42).Results further showed that livestock-crop integration was the most profitable CSA intervention even under a pessimistic assumption with a long payback period of 5.00 a.Moreover,this study indicated that the implementation of CSA interventions,on average,was relatively profitable and had a nominal financial risk for smallholder farmers.Understanding the economic viability of CSA interventions will help in decision-making process toward selecting the right CSA interventions for resilience development.