期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Achievable Rate Analysis and Optimization of Double-RIS Assisted Spatially Correlated MIMO with Statistical CSI
1
作者 Xu Kaizhe Guo Jiajia +2 位作者 Zhang Jun Jin Shi Ma Shaodan 《China Communications》 2025年第1期139-157,共19页
Reconfigurable intelligent surface(RIS)is a novel meta-material which can form a smart radio environment by dynamically altering reflection directions of the impinging electromagnetic waves.In the prior literature,the... Reconfigurable intelligent surface(RIS)is a novel meta-material which can form a smart radio environment by dynamically altering reflection directions of the impinging electromagnetic waves.In the prior literature,the inter-RIS links which also contribute to the performance of the whole system are usually neglected when multiple RISs are deployed.In this paper we investigate a general double-RIS assisted multiple-input multiple-output(MIMO)wireless communication system under spatially correlated non line-of-sight propagation channels,where the cooperation of the double RISs is also considered.The design objective is to maximize the achievable ergodic rate based on full statistical channel state information(CSI).Specifically,we firstly present a closedform asymptotic expression for the achievable ergodic rate by utilizing replica method from statistical physics.Then a full statistical CSI-enabled optimal design is proposed which avoids high pilot training overhead compared to instantaneous CSI-enabled design.To further reduce the signal processing overhead and lower the complexity for practical realization,a common-phase scheme is proposed to design the double RISs.Simulation results show that the derived asymptotic ergodic rate is quite accurate even for small-sized antenna arrays.And the proposed optimization algorithm can achieve substantial gain at the expense of a low overhead and complexity.Furthermore,the cooperative double-RIS assisted MIMO framework is proven to achieve superior ergodic rate performance and high communication reliability under harsh propagation environment. 展开更多
关键词 common reflection pattern double RISs large system analysis MIMO replica method
在线阅读 下载PDF
Single-trial EEG-based emotion recognition using temporally regularized common spatial pattern
2
作者 成敏敏 陆祖宏 王海贤 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期55-60,共6页
This study addresses the problem of classifying emotional words based on recorded electroencephalogram (EEG) signals by the single-trial EEG classification technique. Emotional two-character Chinese words are used a... This study addresses the problem of classifying emotional words based on recorded electroencephalogram (EEG) signals by the single-trial EEG classification technique. Emotional two-character Chinese words are used as experimental materials. Positive words versus neutral words and negative words versus neutral words are classified, respectively, using the induced EEG signals. The method of temporally regularized common spatial patterns (TRCSP) is chosen to extract features from the EEG trials, and then single-trial EEG classification is achieved by linear discriminant analysis. Classification accuracies are between 55% and 65%. The statistical significance of the classification accuracies is confirmed by permutation tests, which shows the successful identification of emotional words and neutral ones, and also the ability to identify emotional words. In addition, 10 out of 15 subjects obtain significant classification accuracy for negative words versus neutral words while only 4 are significant for positive words versus neutral words, which demonstrate that negative emotions are more easily identified. 展开更多
关键词 emotion recognition temporal regularization common spatial patterns(CSP) two-character Chinese words permutation test
在线阅读 下载PDF
Common Spatial Pattern Ensemble Classifier and Its Application in Brain-Computer Interface 被引量:5
3
作者 Xu Lei Ping Yang Peng Xu Tie-Jun Liu De-Zhong Yao 《Journal of Electronic Science and Technology of China》 2009年第1期17-21,共5页
Abstract-Common spatial pattern (CSP) algorithm is a successful tool in feature estimate of brain-computer interface (BCI). However, CSP is sensitive to outlier and may result in poor outcomes since it is based on... Abstract-Common spatial pattern (CSP) algorithm is a successful tool in feature estimate of brain-computer interface (BCI). However, CSP is sensitive to outlier and may result in poor outcomes since it is based on pooling the covariance matrices of trials. In this paper, we propose a simple yet effective approach, named common spatial pattern ensemble (CSPE) classifier, to improve CSP performance. Through division of recording channels, multiple CSP filters are constructed. By projection, log-operation, and subtraction on the original signal, an ensemble classifier, majority voting, is achieved and outlier contaminations are alleviated. Experiment results demonstrate that the proposed CSPE classifier is robust to various artifacts and can achieve an average accuracy of 83.02%. 展开更多
关键词 Brain-computer interface channel selection classifier ensemble common spatial pattern.
在线阅读 下载PDF
Improvement of classification accuracy of functional near-infrared spectroscopy signals for hand motion and motor imagery using a common spatial pattern algorithm
4
作者 Omid Asadi Mahsan Hajihosseini +2 位作者 Sima Shirzadi Zahra Einalou Mehrdad Dadgostar 《Intelligent Medicine》 2025年第2期123-131,共9页
Objective Classifying motor imagery tasks via functional near-infrared spectroscopy(fNIRS)poses a significant challenge in brain-computer interface(BCI)research due to the high-dimensional nature of the signals.This s... Objective Classifying motor imagery tasks via functional near-infrared spectroscopy(fNIRS)poses a significant challenge in brain-computer interface(BCI)research due to the high-dimensional nature of the signals.This study aimed to address this challenge by employing the common spatial pattern(CSP)algorithm to reduce input dimensions for support vector machine(SVM)and linear discriminant analysis(LDA)classifiers.Methods Data were collected from 15 healthy right-handed volunteers performing tasks involving left-hand motion,left-hand motor imagery,right-hand motion,and right-hand motor imagery.Signals from 20-channel fNIRS were utilized,with input features including statistical descriptors such as mean,variance,slope,skewness,and kurtosis.The CSP algorithm was integrated into both SVM and LDA classifiers to reduce dimensionality.The main statistical methods included classification accuracy assessment and comparison.Results Mean and slope were found to be the most discriminative features.Without CSP,SVM and LDA classifiers achieved average accuracies of 59.81%±0.97%and 69%±11.42%,respectively.However,with CSP integration,accuracies significantly improved to 81.63%±0.99%and 84.19%±3.18%for SVM and LDA,respectively.This value represents an increase of 21.82%and 15.19%in accuracy for SVM and LDA classifiers,respectively.Dimensionality reduction from 100 to 25 dimensions was achieved for SVM,leading to reduced computational complexity and faster calculation times.Additionally,the CSP technique enhanced LDA classifier accuracy by 3.31%for both motion and motor imagery tasks.Conclusion Integration of the CSP algorithm may demonstrate promising potential for improving BCI systems'performance. 展开更多
关键词 Functional near-infrared spectroscopy Common spatial pattern Motor imagery Support vector machine Linear discriminant analysis Sequential forward selection
原文传递
Quality analysis of commercial samples of Ziziphi spinosae semen(suanzaoren) by means of chromatographic fingerprinting assisted by principal component analysis 被引量:17
5
作者 Shuai Sun Hailing Liu +2 位作者 Shunjun Xu Yuzhen Yan Peishan Xie 《Journal of Pharmaceutical Analysis》 CAS 2014年第3期217-222,共6页
Due to the scarcity of resources of Ziziphi spinosae semen (ZSS), many inferior goods and even adulterants are generally found in medicine markets. To strengthen the quality control, HPLC fingerprint common pattern ... Due to the scarcity of resources of Ziziphi spinosae semen (ZSS), many inferior goods and even adulterants are generally found in medicine markets. To strengthen the quality control, HPLC fingerprint common pattern established in this paper showed three main bioactive compounds in one chromatogram simultaneously. Principal component analysis based on DAD signals could discriminate adulterants and inferiorities. Principal component analysis indicated that all samples could be mainly regrouped into two main clusters according to the first principal component (PC1, redefined as Vicenin II) and the second principal component (PC2, redefined as zizyphusine). PC1 and PC2 could explain 91.42%of the variance. Content of zizyphusine fluctuated more greatly than that of spinosin, and this result was also confirmed by the HPTLC result. Samples with low content of jujubosides and two common adulterants could not be used equivalently with authenticated ones in clinic, while one reference standard extract could substitute the crude drug in pharmaceutical production. Giving special consideration to the well-known bioactive saponins but with low response by end absorption, a fast and cheap HPTLC method for quality control of ZSS was developed and the result obtained was commensurate well with that of HPLC analysis. Samples having similar fingerprints to HPTLC common pattern targeting at saponins could be regarded as authenticated ones. This work provided a faster and cheaper way for quality control of ZSS and laid foundation for establishing a more effective quality control method for ZSS. 展开更多
关键词 ADULTERANT Common pattern Principal component analysis Quality control Ziziphi spinosae semen
暂未订购
An Algorithm for Idle-State Detection and Continuous Classifier Design in Motor-Imagery-Based BCI 被引量:3
6
作者 Yu Huang Qiang Wu Xu Lei Ping Yang Peng Xu De-Zhong Yao 《Journal of Electronic Science and Technology of China》 2009年第1期27-33,共7页
Abstract-The development of asynchronous brain-computer interface (BCI) based on motor imagery (M1) poses the research in algorithms for detecting the nontask states (i.e., idle state) and the design of continuo... Abstract-The development of asynchronous brain-computer interface (BCI) based on motor imagery (M1) poses the research in algorithms for detecting the nontask states (i.e., idle state) and the design of continuous classifiers that classify continuously incoming electroencephalogram (EEG) samples. An algorithm is proposed in this paper which integrates two two-class classifiers to detect idle state and utilizes a sliding window to achieve continuous outputs. The common spatial pattern (CSP) algorithm is used to extract features of EEG signals and the linear support vector machine (SVM) is utilized to serve as classifier. The algorithm is applied on dataset IVb of BCI competition Ⅲ, with a resulting mean square error of 0.66. The result indicates that the proposed algorithm is feasible in the first step of the development of asynchronous systems. 展开更多
关键词 Brain-computer interface competition common spatial pattern continuous classifier idle state motor imagery support vector machine.
在线阅读 下载PDF
Research on time-frequency cross mutual of motor imagination data based on multichannel EEG signal
7
作者 REN Bin PAN Yunjie 《High Technology Letters》 EI CAS 2022年第1期21-29,共9页
At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels w... At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels will result in a large amount of calculation.Components irrelevant to the task will interfere with the required features,which is not conducive to the real-time processing of EEG data.Using too few channels will result in the loss of useful information and low robustness.A method of selecting data channels for motion imagination is proposed based on the time-frequency cross mutual information(TFCMI).This method determines the required data channels in a targeted manner,uses the common spatial pattern mode for feature extraction,and uses support vector ma-chine(SVM)for feature classification.An experiment is designed to collect motor imagery EEG da-ta with four experimenters and adds brain-computer interface(BCI)Competition IV public motor imagery experimental data to verify the method.The data demonstrates that compared with the meth-od of selecting too many or too few data channels,the time-frequency cross mutual information meth-od using motor imagery can improve the recognition accuracy and reduce the amount of calculation. 展开更多
关键词 electroencephalogram(EEG)signal time-frequency cross mutual information(TFCMI) motion imaging common spatial pattern(CSP) support vector machine(SVM)
在线阅读 下载PDF
Classification of EEG-based single-trial motor imagery tasks using a B-CSP method for BCI 被引量:7
8
作者 Zhi-chuan TANG Chao LI +2 位作者 Jian-feng WU Peng-cheng LIU Shi-wei CHENG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第8期1087-1099,共13页
Classifying single-trial electroencephalogram(EEG)based motor imagery(MI)tasks is extensively used to control brain-computer interface(BCI)applications,as a communication bridge between humans and computers.However,th... Classifying single-trial electroencephalogram(EEG)based motor imagery(MI)tasks is extensively used to control brain-computer interface(BCI)applications,as a communication bridge between humans and computers.However,the low signal-to-noise ratio and individual differences of EEG can affect the classification results negatively.In this paper,we propose an improved common spatial pattern(B-CSP)method to extract features for alleviating these adverse effects.First,for different subjects,the method of Bhattacharyya distance is used to select the optimal frequency band of each electrode including strong event-related desynchronization(ERD)and event-related synchronization(ERS)patterns;then the signals of the optimal frequency band are decomposed into spatial patterns,and the features that can describe the maximum differences of two classes of MI are extracted from the EEG data.The proposed method is applied to the public data set and experimental data set to extract features which are input into a back propagation neural network(BPNN)classifier to classify single-trial MI EEG.Another two conventional feature extraction methods,original common spatial pattern(CSP)and autoregressive(AR),are used for comparison.An improved classification performance for both data sets(public data set:91.25%±1.77%for left hand vs.foot and84.50%±5.42%for left hand vs.right hand;experimental data set:90.43%±4.26%for left hand vs.foot)verifies the advantages of the B-CSP method over conventional methods.The results demonstrate that our proposed B-CSP method can classify EEG-based MI tasks effectively,and this study provides practical and theoretical approaches to BCI applications. 展开更多
关键词 Electroencephalogram(EEG) Motor imagery(MI) Improved common spatial pattern(B-CSP) Feature extraction CLASSIFICATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部