期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Advancing precision medicine:the transformative role of artificial intelligence in immunogenomics,radiomics,and pathomics for biomarker discovery and immunotherapy optimization 被引量:2
1
作者 Luchen Chang Jiamei Liu +4 位作者 Jialin Zhu Shuyue Guo Yao Wang Zhiwei Zhou Xi Wei 《Cancer Biology & Medicine》 2025年第1期33-47,共15页
Artificial intelligence(AI)is significantly advancing precision medicine,particularly in the fields of immunogenomics,radiomics,and pathomics.In immunogenomics,AI can process vast amounts of genomic and multi-omic dat... Artificial intelligence(AI)is significantly advancing precision medicine,particularly in the fields of immunogenomics,radiomics,and pathomics.In immunogenomics,AI can process vast amounts of genomic and multi-omic data to identify biomarkers associated with immunotherapy responses and disease prognosis,thus providing strong support for personalized treatments.In radiomics,AI can analyze high-dimensional features from computed tomography(CT),magnetic resonance imaging(MRI),and positron emission tomography/computed tomography(PET/CT)images to discover imaging biomarkers associated with tumor heterogeneity,treatment response,and disease progression,thereby enabling non-invasive,real-time assessments for personalized therapy.Pathomics leverages AI for deep analysis of digital pathology images,and can uncover subtle changes in tissue microenvironments,cellular characteristics,and morphological features,and offer unique insights into immunotherapy response prediction and biomarker discovery.These AI-driven technologies not only enhance the speed,accuracy,and robustness of biomarker discovery but also significantly improve the precision,personalization,and effectiveness of clinical treatments,and are driving a shift from empirical to precision medicine.Despite challenges such as data quality,model interpretability,integration of multi-modal data,and privacy protection,the ongoing advancements in AI,coupled with interdisciplinary collaboration,are poised to further enhance AI’s roles in biomarker discovery and immunotherapy response prediction.These improvements are expected to lead to more accurate,personalized treatment strategies and ultimately better patient outcomes,marking a significant step forward in the evolution of precision medicine. 展开更多
关键词 Artificial intelligence tumor immune microenvironment GENOMICS TRANSCRIPTOMICS radiomics pathomics
在线阅读 下载PDF
Machine learning pathomics for identifying luminal and basal-squamous subtypes in bladder cancer
2
作者 Jian-Qiu Kong Yi Huang +6 位作者 Kai-Wen Tan Juan-Juan Yong Yi-Tong Zou Sha Fu Ya-Qiang Huang Chun Jiang Xin-Xiang Fan 《Cancer Advances》 2025年第4期1-8,共8页
Background:Bladder cancer prognosis remains suboptimal despite advancements in research.Current molecular subtyping methods are resource-intensive,highlighting the need for efficient,cost-effective approaches to predi... Background:Bladder cancer prognosis remains suboptimal despite advancements in research.Current molecular subtyping methods are resource-intensive,highlighting the need for efficient,cost-effective approaches to predict BCa molecular subtypes.Method:We developed a predictive model for BCa molecular subtypes using machine learning(ML)and pathomics derived from Hematoxylin-Eosin stained pathological slides.A cohort of 353 patients from TCGA was employed,and image features were extracted for analysis.Pathomic signatures were constructed using the LASSO Cox regression algorithm,and a pathomic-clinical nomogram was developed and validated in training and testing cohorts.Results:Seventy distinct image features were identified from 150 pathomic signatures.The model demonstrated robust predictive ability,with AUCs of 0.833 and 0.822 in the training and validation cohorts,respectively.The addition of pathomic score,N stage,and M stage improved the model’s discrimination,achieving AUCs of 0.877 and 0.794 in the training and validation cohorts.Limitations include the lack of an external validation cohort.Conclusion:Our ML-based pathomics model shows promise in predicting BCa molecular subtypes and has the potential to enhance prognosis prediction and inform treatment strategies,marking a significant step towards precision medicine for BCa. 展开更多
关键词 bladder cancer pathomics machine learning molecular subtyping
暂未订购
Advances and challenges in pathomics for liver cancer:From diagnosis to prognostic stratification
3
作者 Ming-Hui Peng Kai-Lun Zhang +2 位作者 Shi-Wei Guan Quan Lin Hai-Bo Yu 《World Journal of Clinical Oncology》 2025年第6期80-98,共19页
Hepatocellular carcinoma(HCC),a leading cause of cancer mortality,faces diagnostic and therapeutic challenges due to its histopathological complexity and clinical heterogeneity.Pathomics,an emerging discipline that in... Hepatocellular carcinoma(HCC),a leading cause of cancer mortality,faces diagnostic and therapeutic challenges due to its histopathological complexity and clinical heterogeneity.Pathomics,an emerging discipline that integrates artificial intelligence(AI)with quantitative pathology image analysis,aims to decode disease heterogeneity by extracting high-dimensional features from histopathological specimens.This review highlights how AI-driven pathomics has revolutionized liver cancer management through automated analysis of whole-slide images.Pathomics integrates deep learning with histopathological features to enable precise tumour classification(e.g.,HCC vs cholangiocarcinoma),microvascular invasion(MVI)detection,recurrence risk stratification,and survival prediction.Advanced frameworks such as MVI-AI diagnostic model and CHOWDER demonstrate high accuracy in identifying prognostic biomarkers,whereas multiomics integration links morphometric patterns to molecular signatures(e.g.,EZH2 expression and immune infiltration).Despite these breakthroughs,critical bottlenecks persist,including limited multicentre validation studies,"black box"model interpretability,and clinical workflow integration.Future studies should emphasize AI-enhanced multimodal fusion(radiogenomics and liquid biopsy)and standardized platforms to bridge computational pathology and precision oncology,ultimately improving personalized therapeutic strategies for liver malignancies.This synthesis aims to guide research translation and advance personalized therapeutic strategies for liver malignancies. 展开更多
关键词 pathomics Liver cancer Artificial intelligence Deep learning Microvascular invasion Tumor recurrence Prognostic biomarkers Whole-slide imaging Multiomics integration Digital pathology
暂未订购
Integrating pathomics with radiomics and genomics for cancer prognosis:A brief review 被引量:6
4
作者 Cheng Lu Rakesh Shiradkar Zaiyi Liu 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2021年第5期563-573,共11页
In the last decade,the focus of computational pathology research community has shifted from replicating the pathological examination for diagnosis done by pathologists to unlocking and discovering"sub-visual"... In the last decade,the focus of computational pathology research community has shifted from replicating the pathological examination for diagnosis done by pathologists to unlocking and discovering"sub-visual"prognostic image cues from the histopathological image.While we are getting more knowledge and experience in digital pathology,the emerging goal is to integrate other-omics or modalities that will contribute for building a better prognostic assay.In this paper,we provide a brief review of representative works that focus on integrating pathomics with radiomics and genomics for cancer prognosis.It includes:correlation of pathomics and genomics;fusion of pathomics and genomics;fusion of pathomics and radiomics.We also present challenges,potential opportunities,and avenues for future work. 展开更多
关键词 Radiomics pathomics GENOMICS PROGNOSIS digital pathology
暂未订购
Tumor immune dysfunction and exclusion evaluation and chemoimmunotherapy response prediction in lung adenocarcinoma using pathomic-based approach
5
作者 Wei Nie Liang Zheng +9 位作者 Yinchen Shen Yao Zhang Haohua Teng Runbo Zhong Lei Cheng Guangyu Tao Baohui Han Tianqing Chu Hua Zhong Xueyan Zhang 《Chinese Medical Journal》 2025年第3期346-348,共3页
To the Editor:Lung cancer,specifically lung adenocarcinoma(LUAD),is one of the primary cause of cancer-related mortality globally.[1,2]Nevertheless,only a small subset of individuals with LUAD have derived clinical be... To the Editor:Lung cancer,specifically lung adenocarcinoma(LUAD),is one of the primary cause of cancer-related mortality globally.[1,2]Nevertheless,only a small subset of individuals with LUAD have derived clinical benefits from chemoimmunotherapy in either first-line or subsequent treatment settings.Both programmed death-ligand 1(PDL1)expression and tumor mutational burden(TMB)have proven inadequate in accurately predicting treatment outcomes in these scenarios.[3]Consequently,there exists a pressing necessity to identify a reliable biomarker to inform treatment decisions. 展开更多
关键词 lung adenocarcinoma tumor immune dysfunction immune exclusion chemoimmunotherapy response prediction lung adenocarcinoma luad pathomic based approach
原文传递
A Disentangled Representation-Based Multimodal Fusion Framework Integrating Pathomics and Radiomics for KRAS Mutation Detection in Colorectal Cancer 被引量:1
6
作者 Zhilong Lv Rui Yan +3 位作者 Yuexiao Lin Lin Gao Fa Zhang Ying Wang 《Big Data Mining and Analytics》 EI CSCD 2024年第3期590-602,共13页
Kirsten rat sarcoma viral oncogene homolog(namely KRAS)is a key biomarker for prognostic analysis and targeted therapy of colorectal cancer.Recently,the advancement of machine learning,especially deep learning,has gre... Kirsten rat sarcoma viral oncogene homolog(namely KRAS)is a key biomarker for prognostic analysis and targeted therapy of colorectal cancer.Recently,the advancement of machine learning,especially deep learning,has greatly promoted the development of KRAS mutation detection from tumor phenotype data,such as pathology slides or radiology images.However,there are still two major problems in existing studies:inadequate single-modal feature learning and lack of multimodal phenotypic feature fusion.In this paper,we propose a Disentangled Representation-based Multimodal Fusion framework integrating Pathomics and Radiomics(DRMF-PaRa)for KRAS mutation detection.Specifically,the DRMF-PaRa model consists of three parts:(1)the pathomics learning module,which introduces a tissue-guided Transformer model to extract more comprehensive and targeted pathological features;(2)the radiomics learning module,which captures the generic hand-crafted radiomics features and the task-specific deep radiomics features;(3)the disentangled representation-based multimodal fusion module,which learns factorized subspaces for each modality and provides a holistic view of the two heterogeneous phenotypic features.The proposed model is developed and evaluated on a multi modality dataset of 111 colorectal cancer patients with whole slide images and contrast-enhanced CT.The experimental results demonstrate the superiority of the proposed DRMF-PaRa model with an accuracy of 0.876 and an AUC of 0.865 for KRAS mutation detection. 展开更多
关键词 KRAS mutation detection multimodal feature fusion pathomics radiomics
原文传递
影像组学及病理组学在脑胶质瘤的研究进展 被引量:1
7
作者 王娟 张辉 《磁共振成像》 北大核心 2025年第4期155-160,共6页
脑胶质瘤是最常见的原发性恶性脑肿瘤,其发病率高、预后差。术前预测脑胶质瘤的分级、分子分型、肿瘤微环境及预后对于制订个体化决策具有重要临床意义。影像组学和病理组学的技术进展正在重塑脑胶质瘤诊断和预后评估的模式。影像组学... 脑胶质瘤是最常见的原发性恶性脑肿瘤,其发病率高、预后差。术前预测脑胶质瘤的分级、分子分型、肿瘤微环境及预后对于制订个体化决策具有重要临床意义。影像组学和病理组学的技术进展正在重塑脑胶质瘤诊断和预后评估的模式。影像组学通过影像数据的高维特征进行量化分析,病理组学则基于组织切片图像挖掘微观病理特征,两者的结合可以实现无创、精准的肿瘤评估。本文就影像组学和病理组学在脑胶质瘤研究进展进行综述,从而为胶质瘤患者提供精准诊疗和个体化管理。 展开更多
关键词 胶质瘤 影像组学 病理组学 磁共振成像 分子分型 肿瘤微环境
暂未订购
Artificial intelligence and the impact of multiomics on the reporting of case reports
8
作者 Aishwarya Boini Vincent Grasso +1 位作者 Heba Taher Andrew A Gumbs 《World Journal of Clinical Cases》 2025年第15期1-6,共6页
The integration of artificial intelligence(AI)and multiomics has transformed clinical and life sciences,enabling precision medicine and redefining disease understanding.Scientific publications grew significantly from ... The integration of artificial intelligence(AI)and multiomics has transformed clinical and life sciences,enabling precision medicine and redefining disease understanding.Scientific publications grew significantly from 2.1 million in 2012 to 3.3 million in 2022,with AI research tripling during this period.Multiomics fields,including genomics and proteomics,also advanced,exemplified by the Human Proteome Project achieving a 90%complete blueprint by 2021.This growth highlights opportunities and challenges in integrating AI and multiomics into clinical reporting.A review of studies and case reports was conducted to evaluate AI and multiomics integration.Key areas analyzed included diagnostic accuracy,predictive modeling,and personalized treatment approaches driven by AI tools.Case examples were studied to assess impacts on clinical decision-making.AI and multiomics enhanced data integration,predictive insights,and treatment personalization.Fields like radiomics,genomics,and proteomics improved diagnostics and guided therapy.For instance,the“AI radiomics,geno-mics,oncopathomics,and surgomics project”combined radiomics and genomics for surgical decision-making,enabling preoperative,intraoperative,and post-operative interventions.AI applications in case reports predicted conditions like postoperative delirium and monitored cancer progression using genomic and imaging data.AI and multiomics enable standardized data analysis,dynamic updates,and predictive modeling in case reports.Traditional reports often lack objectivity,but AI enhances reproducibility and decision-making by processing large datasets.Challenges include data standardization,biases,and ethical concerns.Overcoming these barriers is vital for optimizing AI applications and advancing personalized medicine.AI and multiomics integration is revolutionizing clinical research and practice.Standardizing data reporting and addressing challenges in ethics and data quality will unlock their full potential.Emphasizing collaboration and transparency is essential for leveraging these tools to improve patient care and scientific communication. 展开更多
关键词 Artificial intelligence Multiomics Precision medicine GENOMICS PROTEOMICS Metabolomics Radiomics pathomics Surgomics Predictive modeling
暂未订购
基于机器学习的病理组学模型在成人型弥漫性胶质瘤诊断中的应用
9
作者 任悠悠 王伟伟 《南阳理工学院学报》 2025年第4期109-116,共8页
目的基于全视野数字病理切片(WSIs)使用机器学习技术开发构建预测模型,快速、准确预测胶质瘤的IDH状态和1p19q共缺失状态,减少对传统分子检测的依赖。方法本研究为回顾性研究,纳入2011—2022年郑州大学第一附属医院2072例成人型弥漫性... 目的基于全视野数字病理切片(WSIs)使用机器学习技术开发构建预测模型,快速、准确预测胶质瘤的IDH状态和1p19q共缺失状态,减少对传统分子检测的依赖。方法本研究为回顾性研究,纳入2011—2022年郑州大学第一附属医院2072例成人型弥漫性胶质瘤患者的WSIs及临床信息。使用CellProfiler软件从WSIs中提取形态学、纹理、颜色等多维度病理组学特征,并通过Z-score标准化处理。采用Boruta算法结合随机森林模型筛选关键特征集,分别用于IDH状态和1p19q共缺失状态预测。随后,使用随机森林算法构建预测模型,并通过10折交叉验证进行训练和优化。模型性能通过ROC曲线、PR曲线和校准曲线评估。此外,通过Kaplan-Meier曲线对比评估模型预测效能。结果IDH状态预测模型在训练集和验证集上的AUC分别为0.86和0.82,PR曲线训练集AUC为0.78,校准曲线显示预测概率与实际概率高度一致。1p19q共缺失预测模型在训练集和验证集上的AUC分别为0.82和0.77,PR曲线训练集AUC为0.52,校准曲线显示出较高的预测准确性。Kaplan-Meier生存分析显示,模型预测的KM曲线与真实曲线贴合紧密,验证了模型预测效能。结果表明,病理组学模型可成功预测胶质瘤的IDH状态和1p19q共缺失状态。结论成功构建基于WSIs的病理组学预测模型,可快速、准确预测胶质瘤IDH状态和1p19q共缺失状态,具有临床应用潜力。 展开更多
关键词 病理组学 胶质瘤 IDH 1p19q 预测模型 机器学习
暂未订购
影像组学联合病理组学在肿瘤中的研究进展 被引量:1
10
作者 曹颖 王晓霞 张久权 《中国医学影像学杂志》 CSCD 北大核心 2024年第5期524-528,共5页
恶性肿瘤是严重威胁人类健康的重大疾病,精准诊断和疗效评估是提高临床治疗效果、降低肿瘤相关死亡率的关键。随着人工智能在医学图像领域的深入发展,影像组学与病理组学应运而生并在肿瘤诊治过程中显示出巨大的潜力,但也分别显示出其... 恶性肿瘤是严重威胁人类健康的重大疾病,精准诊断和疗效评估是提高临床治疗效果、降低肿瘤相关死亡率的关键。随着人工智能在医学图像领域的深入发展,影像组学与病理组学应运而生并在肿瘤诊治过程中显示出巨大的潜力,但也分别显示出其缺乏生物学验证以及缺乏肿瘤宏观属性的局限性。将两者跨模态跨尺度结合,彼此取长补短很有必要。本文对影像组学和病理组学工作流程及两者联合在肿瘤方面的应用进展、局限性及未来展望进行综述。 展开更多
关键词 肿瘤 人工智能 影像组学 病理组学 综述
暂未订购
基于成像表型的多组学分析识别膀胱癌TP53突变模式的价值
11
作者 陈潇豫 魏达友 +4 位作者 林艳 何敏诗 张朝浩 林攀 吴林永 《影像研究与医学应用》 2024年第17期33-36,共4页
目的:基于放射组学、深度学习、病理组学多组学分析成像表型特征与膀胱癌(BLCA)肿瘤蛋白53(TP53)突变模式的关系。方法:基于公共数据库下载57例BLCA患者的多组学数据。以术前动脉期CT提取放射组学和深度学习特征,从术后苏木精-伊红染色... 目的:基于放射组学、深度学习、病理组学多组学分析成像表型特征与膀胱癌(BLCA)肿瘤蛋白53(TP53)突变模式的关系。方法:基于公共数据库下载57例BLCA患者的多组学数据。以术前动脉期CT提取放射组学和深度学习特征,从术后苏木精-伊红染色病理图提取病理组学特征。主成分分析和Relief双重降维特征后,基于随机森林算法开发TP53突变列线图。使用受试者操作特性曲线下面积(AUC)评估列线图的性能。结果:经过21个放射组学特征、9个深度学习特征和9个病理组学特征降维后确定24个特征开发列线图,训练队列和验证队列的曲线下面积分别为0.95和0.87,准确率为0.88和0.88,灵敏度为0.87和0.90,特异度为0.88和0.86。结论:利用多组学成像表型信息互补作用阐明了成像表型特征与BLCA—TP53突变模式的关系,可作为TP53突变的非侵入性替代标记,为精准医学管理提供依据。 展开更多
关键词 膀胱癌 TP53突变 放射组学 深度学习 病理组学 多组学分析
暂未订购
骨痛膜对兔膝骨性关节炎病理形态学与氨基己糖影响的实验研究
12
作者 孙成良 张方建 +2 位作者 白书臣 曹逸 吴飞 《中国中医骨伤科杂志》 CAS 2010年第7期5-7,10,共4页
目的:观察骨痛膜对日本大耳白兔膝关节骨性关节炎病理形态学与氨基己糖含量的作用与影响。方法:将30只日本大耳白兔随机分为正常组、造模组、治疗组(骨痛膜组)、对照组(通络祛痛膏组)、基质膏组,除正常组(只切开皮肤)外,均行右股静脉、... 目的:观察骨痛膜对日本大耳白兔膝关节骨性关节炎病理形态学与氨基己糖含量的作用与影响。方法:将30只日本大耳白兔随机分为正常组、造模组、治疗组(骨痛膜组)、对照组(通络祛痛膏组)、基质膏组,除正常组(只切开皮肤)外,均行右股静脉、臀下静脉结扎造兔膝骨性关节炎模型。造模8周后,予以骨痛膜、通络祛痛膏、基质膏外敷。治疗3周后取材,首先肉眼观察各组兔的膝关节软骨表面情况,然后将剪取的部分关节软骨标本,进行光镜和电镜观察并摄像,剩余部分关节软骨标本依照标准曲线计算法测定氨基己糖含量。结果:①肉眼观察、光镜和电镜下正常组兔的膝关节软骨基本无破坏;造模组关节软骨破坏严重;对照组关节软骨破坏程度较造模组轻;治疗组关节软骨破坏程度较造模组明显减轻。②正常组和治疗组比较氨基己糖含量差异无统计学意义(P>0.05);造模组、对照组、基质膏组氨基己糖含量分别与正常组比较,差异有统计学意义(P<0.05)。结论:骨痛膜外敷对膝骨性关节炎模型兔的关节炎具有明确的治疗效果。 展开更多
关键词 膝关节 骨性关节炎 骨痛膜 病理形态学 氨基己糖
原文传递
跨国高校学分互换互认研究——以云南师范大学与泰国佛统皇家大学为例 被引量:1
13
作者 张桂明 《云南开放大学学报》 2014年第1期5-9,共5页
跨国高校之间的合作越来越密切,跨国高校学分互换互认的实施直接影响着学校合作的顺利开展。云南师范大学与泰国佛统皇家大学有多年进行学分互换互认经验,但两校实施学分互换互认还没有标准的体制且还在探索中进行。对于两校学分互换互... 跨国高校之间的合作越来越密切,跨国高校学分互换互认的实施直接影响着学校合作的顺利开展。云南师范大学与泰国佛统皇家大学有多年进行学分互换互认经验,但两校实施学分互换互认还没有标准的体制且还在探索中进行。对于两校学分互换互认过程中存在的问题,应从观念层面、政策层面和运行层面探寻两高校进行学分互换互认的新思路。 展开更多
关键词 云南师范大学 泰国佛统皇家大学 学分互换互认
在线阅读 下载PDF
The Learning Process: A Tourist Visitor to the National Museum
14
作者 Issarapong Poltanee Noppamash Suvachart 《Journal of Tourism and Hospitality Management》 2014年第2期49-59,共11页
This paper aims to develop an understanding of the undergraduate students' learning by applying Kolb's (1984) learning concepts and theories. This research aims: (1) to study the visitors' learning experience;... This paper aims to develop an understanding of the undergraduate students' learning by applying Kolb's (1984) learning concepts and theories. This research aims: (1) to study the visitors' learning experience; (2) to compare the learning process of visitors; and (3) to design learning process development for the visitors of the Phra Pathom Chedi National Museum. The quantitative methodology was used for data collection. The population was focused on group samplings of 300 participants and the selection method was a non-probability and purposive sampling. The research instrument was the structured questionnaire. Descriptive statistics, T-test, F-test (one-way analysis of variance (ANOVA)), and regression analysis were used for data analysis. According to the first objective, the study revealed that most of visitors were female, at the age of 19 years old, had a bachelor degree, and had income less than 5,000 baht. Their learning levels at the Phra Pathom Chedi National Museum were high. According to the second objective, the study found that there was no correlation between gender and income to the visitors' learning process related to the theoretical four learning processes which are: (1) before learning; (2) learning behavior; (3) while learning; and (4) the best ways of learning that create the most understanding. However, age and education varied the level of visitors' leaming process. According to the third objective regarding the four models of learning process development design, the study presented that: (1) For the accommodators, the visitors should be male, at a young age, and have a bachelor degree; (2) For the divergers, the visitors should be at a young age and have a bachelor degree; (3) For the convergers, the visitors should be at a young age, have a bachelor degree, and not with high income; and (4) For the assimilators, the visitors should be at a young age, have a bachelor degree, and with high income. 展开更多
关键词 learning process national museum Phra pathom Chedi
在线阅读 下载PDF
白桦BpPR1基因生物信息学分析 被引量:1
15
作者 安玉婷 李然红 +1 位作者 陈鑫 刘丹 《湖北农业科学》 2020年第12期171-174,178,共5页
利用生物信息学方法,对白桦BpPR1理化性质、亲水/疏水性、跨膜结构、二级结构、三级结构及与其他植物PR1蛋白的同源性进行了预测,同时对该基因启动子的顺式作用元件以及基因结构进行了预测和分析。结果表明,①BpPR1的cDNA全长为816 bp,... 利用生物信息学方法,对白桦BpPR1理化性质、亲水/疏水性、跨膜结构、二级结构、三级结构及与其他植物PR1蛋白的同源性进行了预测,同时对该基因启动子的顺式作用元件以及基因结构进行了预测和分析。结果表明,①BpPR1的cDNA全长为816 bp,CDS为531 bp,编码由176个氨基酸构成的稳定亲水性蛋白,存在跨膜运输结构,属于CAP蛋白家族的一员。白桦BpPR1与葡萄、枣亲缘关系较近;②BpPR1基因组结构中含有2个外显子和3个内含子;③BpPR1启动子含有多个真核生物启动子的基本元件CAAT-box和TATA-box,还含有与低温响应、脱落酸响应、茉莉酸甲酯响应、生长素响应、水杨酸响应、细胞分裂素响应相关的响应元件以及MYBHv1结合位点等,说明该蛋白可能受多种生长调节剂调控,参与生物与非生物胁迫过程。 展开更多
关键词 白桦(Betula platyphylla) 病程相关蛋白 生物信息学
在线阅读 下载PDF
基于机器学习的病理组学特征可预测乳腺癌患者对新辅助化疗的反应 被引量:2
16
作者 张杰秋 伍棋 +1 位作者 王舰梅 要小鹏 《重庆医科大学学报》 CAS CSCD 北大核心 2023年第12期1483-1488,共6页
目的:利用病理组学的方法开发用于预测乳腺癌(breast cancer,BC)患者新辅助化疗(neoadjuvant chemotherapy,NAC)反应的新型标志物。方法:回顾性纳入211例西南医科大学附属医院的非特殊浸润性BC患者(训练组:155例,验证组:56例),使用CellP... 目的:利用病理组学的方法开发用于预测乳腺癌(breast cancer,BC)患者新辅助化疗(neoadjuvant chemotherapy,NAC)反应的新型标志物。方法:回顾性纳入211例西南医科大学附属医院的非特殊浸润性BC患者(训练组:155例,验证组:56例),使用CellProfiler软件提取患者数字病理切片中的高维病理组学特征,利用Mann-Whitney U检验、Spearman相关系数和最小绝对值收敛和选择算子(least absolute shrinkage and selection operator,LASSO)算法进行特征逐层筛选。筛选后的最优特征通过支持向量机(support vector machine,SVM)方法在训练集中开发了病理组学特征(pathomics signature,PS)并在独立验证集中进行验证。PS与单因素有意义的临床病理因素(P<0.05)纳入多因素逻辑回归进行进一步验证。结果:PS的曲线下面积(area under the curve,AUC)为0.749(95%CI=0.672~0.827),验证集中AUC为0.737(95%CI=0.604~0.870)。多因素逻辑回归的结果显示,PS(OR=2.317)与人表皮生长因子受体2(human epidermal growth factor receptor 2,HER2)(OR=4.018)是BC患者NAC反应的独立预测因素。结论:PS可以帮助临床医生在治疗前准确预测NAC的反应,促进BC患者的个性化治疗。 展开更多
关键词 病理组学 新辅助化疗 乳腺癌 预测模型
原文传递
人工智能在肾癌诊疗中的运用及展望
17
作者 陈思腾 郑军华 《中国临床新医学》 2021年第7期647-651,共5页
人工智能现已逐步渗透入肾癌基因组学、转录组学、影像组学和病理组学等多方面的研究中,并在肾癌的诊疗领域取得了重要成果和初步运用。但是,现有的研究还存在着偏向于肾癌的诊断以及简单的临床预后预测,缺少对肾癌靶向治疗等疗效的预测... 人工智能现已逐步渗透入肾癌基因组学、转录组学、影像组学和病理组学等多方面的研究中,并在肾癌的诊疗领域取得了重要成果和初步运用。但是,现有的研究还存在着偏向于肾癌的诊断以及简单的临床预后预测,缺少对肾癌靶向治疗等疗效的预测,缺少多中心的临床验证研究等不足。未来仍需开展大规模、多中心研究进一步验证人工智能在肾癌诊疗领域中的运用价值。本文就人工智能在肾癌诊疗中的运用和展望进行综述。 展开更多
关键词 人工智能 肾癌 机器学习 影像组学 病理组学
暂未订购
Multi-omics synergy in oncology:Unraveling the complex interplay of radiomic,genoproteomic,and pathological data
18
作者 Yang Luo Yilin Li +7 位作者 Mengjie Fang Shuo Wang Lizhi Shao Ruiyang Zou Di Dong Zhenyu Liu Jingwei Wei Jie Tian 《Intelligent Oncology》 2025年第1期17-30,共14页
The advent of multi-omics approaches has revolutionized the field of oncology by enabling a comprehensive understanding of cancer biology through the integration of diverse biological data.This review aims to explore ... The advent of multi-omics approaches has revolutionized the field of oncology by enabling a comprehensive understanding of cancer biology through the integration of diverse biological data.This review aims to explore the synergy between three key omics domains:radiomics,genoproteomics,and pathomics.Radiomics involves extracting high-dimensional data from medical images,providing valuable insights into tumor heterogeneity and treatment response.Genoproteomics,encompassing both genomic and proteomic analyses,delves into the molecular mechanisms driving cancer progression and therapeutic resistance.Pathomics leverages advanced digital pathology techniques to quantitatively analyze tissue architecture and cellular morphology.We provide an in-depth overview of the methodologies and tools employed in each omics field,highlighting their specific applications in oncology,including cancer diagnosis,biomarker discovery,and prediction of treatment outcomes.Furthermore,we discuss the integration of multi-omics data,addressing the challenges and innovative solutions for harmonizing these complex datasets.Through an examination of recent advancements and case studies,we underscore the critical role of multi-omics in advancing our understanding of cancer and paving the way for more effective and personalized therapeutic strategies. 展开更多
关键词 ONCOLOGY Multi-omics Radiomics Genoproteomics pathomics
暂未订购
病理组学在胃癌诊治中的应用与挑战
19
作者 郑仁杰 张尊庶 黄陈 《中华普通外科学文献(电子版)》 2025年第4期274-280,共7页
胃癌是来源于胃黏膜上皮的恶性疾病,其发病率和死亡率在众多恶性肿瘤中均居前列,严重威胁人类的生命健康。胃癌治疗的前提是准确诊断胃癌亚型并提出最佳治疗策略,以延长患者的生存期。近年来,病理组学作为一种人工智能算法驱动的新兴组... 胃癌是来源于胃黏膜上皮的恶性疾病,其发病率和死亡率在众多恶性肿瘤中均居前列,严重威胁人类的生命健康。胃癌治疗的前提是准确诊断胃癌亚型并提出最佳治疗策略,以延长患者的生存期。近年来,病理组学作为一种人工智能算法驱动的新兴组学技术,能够从全切片数字扫描图像中更准确地识别癌症亚型,分析肿瘤微环境及细胞核异形的病理组学特征,这不仅大大提高了病理诊断的效率和准确性,也有利于治疗方案选定及预后的远期评估等,具有广阔的临床应用前景。尽管胃癌的病理组学现在仍面临标准化数据稀缺,模态数据质量高度异质,缺乏可解释性、可重复性和人工智能信任问题等挑战,但目前已有大量的持续工作来解决这些问题,并促进基于人工智能的病理组学分析的临床转化。在人工智能技术的广泛应用与临床实践中病理组学数据不断完善的推动下,胃癌的精准诊疗领域正迎来创新的浪潮。 展开更多
关键词 病理组学 胃肿瘤 人工智能 诊断
原文传递
基于MRI影像及数字病理图像的组学列线图预测软组织肉瘤术后复发风险的研究 被引量:3
20
作者 王童语 王鹤翔 +6 位作者 赵心迪 侯峰 杨江飞 侯明妤 万光耀 岳斌 郝大鹏 《中华放射学杂志》 CAS CSCD 北大核心 2024年第2期216-224,共9页
目的探讨基于MRI影像及数字病理图像的组学列线图预测软组织肉瘤(STS)术后复发风险的价值。方法本研究为回顾性队列研究, 回顾性收集2016年1月至2021年3月青岛大学附属医院经手术病理证实的192例STS患者, 其中于崂山院区就诊的患者作为... 目的探讨基于MRI影像及数字病理图像的组学列线图预测软组织肉瘤(STS)术后复发风险的价值。方法本研究为回顾性队列研究, 回顾性收集2016年1月至2021年3月青岛大学附属医院经手术病理证实的192例STS患者, 其中于崂山院区就诊的患者作为训练集(112例), 市南院区就诊的患者作为验证集(80例)。对患者进行随访, 分为复发组(87例)和未复发组(105例)。收集患者的临床和影像学特征, 提取病灶脂肪抑制T2WI图像的影像组学和数字病理图像的病理组学特征, 采用多因素Cox回归建立临床模型、影像组学模型、病理组学模型和联合组学模型, 并结合最优组学模型和临床模型, 构建组学列线图。采用一致性指数(C index)和时间依赖受试者操作特征曲线下面积(t-AUC)评价各模型预测STS术后复发风险的效能, 采用DeLong检验比较t-AUC间的差异。采用X-tile软件确定组学列线图的截断值, 将患者分为低风险(106例)、中风险(64例)及高风险(22例)组, 采用Kaplan-Meier生存曲线和log-rank检验计算并比较3个复发风险组的累积无复发生存(RFS)率。结果联合组学模型的性能优于单一影像组学或病理组学模型, 在验证集中的C index为0.727(95%CI 0.632~0.823)、中位t-AUC为0.737(95%CI0.584~0.891)。结合临床模型和联合组学模型构建组学列线图, 在验证集中的C index为0.763(95%CI 0.685~0.842), 中位t-AUC为0.783(95%CI0.639~0.927)。在验证集中, 组学列线图的t-AUC值高于临床模型、TNM模型、影像组学模型及病理组学模型, 差异有统计学意义(Z=3.33、2.18、2.08、2.72, P=0.001、0.029、0.037、0.007);组学列线图与联合组学模型的t-AUC值差异无统计学意义(Z=0.70, P=0.487)。在验证集中, 低、中、高复发风险组STS患者术后1年RFS率为92.0%(95%CI 81.5%~100%)、55.9%(95%CI 40.8%~76.6%)、37.5%(95%CI 15.3%~91.7%)。在训练集和验证集中, 低、中、高复发风险组STS患者的术后累积RFS率差异有统计学意义(训练集χ^(2)=73.90, P<0.001;验证集χ^(2)=18.70, P<0.001)。结论基于MRI影像和数字病理图像的组学列线图对STS术后复发风险具有较好的预测性能。 展开更多
关键词 软组织肿瘤 肉瘤 磁共振成像 影像组学 病理组学
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部