The purpose of this perspective is to discuss the future development of a potential treatment of glial pathology in Alzheimer's disease(AD) and a new regulatory mechanism, nuclear lipids, which may be involved in ...The purpose of this perspective is to discuss the future development of a potential treatment of glial pathology in Alzheimer's disease(AD) and a new regulatory mechanism, nuclear lipids, which may be involved in the pathogenesis of the disease, based on the work of the authors(Takasugi et al., 2011;Komai et al., 2024).展开更多
Adult hippocampal neurogenesis is linked to memory formation in the adult brain,with new neurons in the hippocampus exhibiting greater plasticity during their immature stages compared to mature neurons.Abnormal adult ...Adult hippocampal neurogenesis is linked to memory formation in the adult brain,with new neurons in the hippocampus exhibiting greater plasticity during their immature stages compared to mature neurons.Abnormal adult hippocampal neurogenesis is closely associated with cognitive impairment in central nervous system diseases.Targeting and regulating adult hippocampal neurogenesis have been shown to improve cognitive deficits.This review aims to expand the current understanding and prospects of targeting neurogenesis in the treatment of cognitive impairment.Recent research indicates the presence of abnormalities in AHN in several diseases associated with cognitive impairment,including cerebrovascular diseases,Alzheimer's disease,aging-related conditions,and issues related to anesthesia and surgery.The role of these abnormalities in the cognitive deficits caused by these diseases has been widely recognized,and targeting AHN is considered a promising approach for treating cognitive impairment.However,the underlying mechanisms of this role are not yet fully understood,and the effectiveness of targeting abnormal adult hippocampal neurogenesis for treatment remains limited,with a need for further development of treatment methods and detection techniques.By reviewing recent studies,we classify the potential mechanisms of adult hippocampal neurogenesis abnormalities into four categories:immunity,energy metabolism,aging,and pathological states.In immunity-related mechanisms,abnormalities in meningeal,brain,and peripheral immunity can disrupt normal adult hippocampal neurogenesis.Lipid metabolism and mitochondrial function disorders are significant energy metabolism factors that lead to abnormal adult hippocampal neurogenesis.During aging,the inflammatory state of the neurogenic niche and the expression of aging-related microRNAs contribute to reduced adult hippocampal neurogenesis and cognitive impairment in older adult patients.Pathological states of the body and emotional disorders may also result in abnormal adult hippocampal neurogenesis.Among the current strategies used to enhance this form of neurogenesis,physical therapies such as exercise,transcutaneous electrical nerve stimulation,and enriched environments have proven effective.Dietary interventions,including energy intake restriction and nutrient optimization,have shown efficacy in both basic research and clinical trials.However,drug treatments,such as antidepressants and stem cell therapy,are primarily reported in basic research,with limited clinical application.The relationship between abnormal adult hippocampal neurogenesis and cognitive impairment has garnered widespread attention,and targeting the former may be an important strategy for treating the latter.However,the mechanisms underlying abnormal adult hippocampal neurogenesis remain unclear,and treatments are lacking.This highlights the need for greater focus on translating research findings into clinical practice.展开更多
Parkinson's disease(PD)is the second most common neurodegenerative disorder.The clinical manifestations of PD include motor symptoms,such as bradykinesia,resting tremor,rigidity,and nonmotor symptoms,which include...Parkinson's disease(PD)is the second most common neurodegenerative disorder.The clinical manifestations of PD include motor symptoms,such as bradykinesia,resting tremor,rigidity,and nonmotor symptoms,which include disturbances in sleep,gastrointestinal function,and olfaction.PD misdiagnosis rates have been reported to reach approximately 30%,partly owing to the heterogeneity of parkinsonism with non-PD pathologies,and the differential diagnosis of PD from neurodegenerative diseases such as multiple systemic atrophy(MSA)and progressive supranuclear palsy poses another unmet need.展开更多
Neuroinflammation is a key process in the pathogenesis of various neurodegenerative diseases,such as multiple sclerosis(MS),Alzheimer's disease,and traumatic brain injury.Even for disorders historically unrelated ...Neuroinflammation is a key process in the pathogenesis of various neurodegenerative diseases,such as multiple sclerosis(MS),Alzheimer's disease,and traumatic brain injury.Even for disorders historically unrelated to neuroinflammation,such as Alzheimer's disease,it is now shown to precede pathological protein aggregations.展开更多
基金supported by a grant from the Japan Foundation for applied enzymology (to NT)the Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (26430059, 17K08272, and 20K07014 to NT)+1 种基金the establishment of university fellowships toward the creation of science technology innovation (JPMJFS2128)a Grant-in-Aid for JSPS Fellows (23KJ1603)(to MK)。
文摘The purpose of this perspective is to discuss the future development of a potential treatment of glial pathology in Alzheimer's disease(AD) and a new regulatory mechanism, nuclear lipids, which may be involved in the pathogenesis of the disease, based on the work of the authors(Takasugi et al., 2011;Komai et al., 2024).
基金supported by Technological Innovation 2030-Major Projects of“Brain Science and Brain-like Research,”No.2022ZD0206200(to XG)the National Natural Science Foundation of China,No.82371245(to SJ),82102246(to XD),81701092(to XG)+2 种基金the Natural Science Foundation of Shandong Province,No.ZR2020MH129(to SJ)Shanghai Municipal Key Clinical Specialty,No.shslczdzk03601Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation,No.20DZ2254200。
文摘Adult hippocampal neurogenesis is linked to memory formation in the adult brain,with new neurons in the hippocampus exhibiting greater plasticity during their immature stages compared to mature neurons.Abnormal adult hippocampal neurogenesis is closely associated with cognitive impairment in central nervous system diseases.Targeting and regulating adult hippocampal neurogenesis have been shown to improve cognitive deficits.This review aims to expand the current understanding and prospects of targeting neurogenesis in the treatment of cognitive impairment.Recent research indicates the presence of abnormalities in AHN in several diseases associated with cognitive impairment,including cerebrovascular diseases,Alzheimer's disease,aging-related conditions,and issues related to anesthesia and surgery.The role of these abnormalities in the cognitive deficits caused by these diseases has been widely recognized,and targeting AHN is considered a promising approach for treating cognitive impairment.However,the underlying mechanisms of this role are not yet fully understood,and the effectiveness of targeting abnormal adult hippocampal neurogenesis for treatment remains limited,with a need for further development of treatment methods and detection techniques.By reviewing recent studies,we classify the potential mechanisms of adult hippocampal neurogenesis abnormalities into four categories:immunity,energy metabolism,aging,and pathological states.In immunity-related mechanisms,abnormalities in meningeal,brain,and peripheral immunity can disrupt normal adult hippocampal neurogenesis.Lipid metabolism and mitochondrial function disorders are significant energy metabolism factors that lead to abnormal adult hippocampal neurogenesis.During aging,the inflammatory state of the neurogenic niche and the expression of aging-related microRNAs contribute to reduced adult hippocampal neurogenesis and cognitive impairment in older adult patients.Pathological states of the body and emotional disorders may also result in abnormal adult hippocampal neurogenesis.Among the current strategies used to enhance this form of neurogenesis,physical therapies such as exercise,transcutaneous electrical nerve stimulation,and enriched environments have proven effective.Dietary interventions,including energy intake restriction and nutrient optimization,have shown efficacy in both basic research and clinical trials.However,drug treatments,such as antidepressants and stem cell therapy,are primarily reported in basic research,with limited clinical application.The relationship between abnormal adult hippocampal neurogenesis and cognitive impairment has garnered widespread attention,and targeting the former may be an important strategy for treating the latter.However,the mechanisms underlying abnormal adult hippocampal neurogenesis remain unclear,and treatments are lacking.This highlights the need for greater focus on translating research findings into clinical practice.
基金supported by Swiss Center for Applied Human Toxicology(SCAHT AP22-01)(to RN)。
文摘Parkinson's disease(PD)is the second most common neurodegenerative disorder.The clinical manifestations of PD include motor symptoms,such as bradykinesia,resting tremor,rigidity,and nonmotor symptoms,which include disturbances in sleep,gastrointestinal function,and olfaction.PD misdiagnosis rates have been reported to reach approximately 30%,partly owing to the heterogeneity of parkinsonism with non-PD pathologies,and the differential diagnosis of PD from neurodegenerative diseases such as multiple systemic atrophy(MSA)and progressive supranuclear palsy poses another unmet need.
基金supported by FWO(Fonds voor Wetenschappelijk Onderzoek),grant number G07562NFWO(to BB)。
文摘Neuroinflammation is a key process in the pathogenesis of various neurodegenerative diseases,such as multiple sclerosis(MS),Alzheimer's disease,and traumatic brain injury.Even for disorders historically unrelated to neuroinflammation,such as Alzheimer's disease,it is now shown to precede pathological protein aggregations.