Objective To study the key technologies in the field of ginsenosides and to offer a guide for the future development ginsenosides through the main path identification method based on genetic knowledge persistence algo...Objective To study the key technologies in the field of ginsenosides and to offer a guide for the future development ginsenosides through the main path identification method based on genetic knowledge persistence algorithm(GKPA).Methods The global ginsenoside invention authorized patents were used as the data source to construct a ginsenoside patent self-citation network,and to identify high knowledge persistent patents(HKPP)of ginsenoside technology based on the GKPA,and extract its high knowledge persistence main path(HKPMP).Finally,the genetic forward and backward path(GFBP)was used to search the nodes on the main path,and draw the genetic forward and backward main path(GFBMP)of ginsenoside technology.Results and Conclusion The algorithm was applied to the field of ginsenosides.The research results show the milestone patents in ginsenosides technology and the main evolution process of three key technologies,which points out the future direction for the technological development of ginsenosides.The results obtained by this algorithm are more interpretable,comprehensive and scientific.展开更多
Based on patent cooperation data,this study used a range of city network analysis approaches in order to explore the structure of the Chinese city network which is driven by technological knowledge flows.The results r...Based on patent cooperation data,this study used a range of city network analysis approaches in order to explore the structure of the Chinese city network which is driven by technological knowledge flows.The results revealed the spatial structure,composition structure,hierarchical structure,group structure,and control structure of Chinese city network,as well as its dynamic factors.The major findings are:1) the spatial pattern presents a diamond structure,in which Wuhan is the central city;2) although the invention patent knowledge network is the main part of the broader inter-city innovative cooperation network,it is weaker than the utility model patent;3) as the senior level cities,Beijing,Shanghai and the cities in the Zhujiang(Pearl) River Delta Region show a strong capability of both spreading and controlling technological knowledge;4) whilst a national technology alliance has preliminarily formed,regional alliances have not been adequately established;5) even though the cooperation level amongst weak connection cities is not high,such cities still play an important role in the network as a result of their location within ′structural holes′ in the network;and 6) the major driving forces facilitating inter-city technological cooperation are geographical proximity,hierarchical proximity and technological proximity.展开更多
文摘Objective To study the key technologies in the field of ginsenosides and to offer a guide for the future development ginsenosides through the main path identification method based on genetic knowledge persistence algorithm(GKPA).Methods The global ginsenoside invention authorized patents were used as the data source to construct a ginsenoside patent self-citation network,and to identify high knowledge persistent patents(HKPP)of ginsenoside technology based on the GKPA,and extract its high knowledge persistence main path(HKPMP).Finally,the genetic forward and backward path(GFBP)was used to search the nodes on the main path,and draw the genetic forward and backward main path(GFBMP)of ginsenoside technology.Results and Conclusion The algorithm was applied to the field of ginsenosides.The research results show the milestone patents in ginsenosides technology and the main evolution process of three key technologies,which points out the future direction for the technological development of ginsenosides.The results obtained by this algorithm are more interpretable,comprehensive and scientific.
基金Under the auspices of Major Project of National Social Science Foundation of China(No.13&ZD027)National Natural Science Foundation of China(No.41201128,71433008)
文摘Based on patent cooperation data,this study used a range of city network analysis approaches in order to explore the structure of the Chinese city network which is driven by technological knowledge flows.The results revealed the spatial structure,composition structure,hierarchical structure,group structure,and control structure of Chinese city network,as well as its dynamic factors.The major findings are:1) the spatial pattern presents a diamond structure,in which Wuhan is the central city;2) although the invention patent knowledge network is the main part of the broader inter-city innovative cooperation network,it is weaker than the utility model patent;3) as the senior level cities,Beijing,Shanghai and the cities in the Zhujiang(Pearl) River Delta Region show a strong capability of both spreading and controlling technological knowledge;4) whilst a national technology alliance has preliminarily formed,regional alliances have not been adequately established;5) even though the cooperation level amongst weak connection cities is not high,such cities still play an important role in the network as a result of their location within ′structural holes′ in the network;and 6) the major driving forces facilitating inter-city technological cooperation are geographical proximity,hierarchical proximity and technological proximity.