期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于多级残差跳跃连接网络的图像超分辨率重建
1
作者 王小玉 芦荐宇 +1 位作者 魏钰鑫 俞越 《哈尔滨理工大学学报》 北大核心 2025年第2期73-81,共9页
图像超分辨重建技术可以将低分辨率的图像转换成具有更高像素密度和更清晰细节的高分辨率图像,在军事、医学等领域发挥着重要作用。针对现有的图像超分辨率重建算法仍存在纹理细节、色彩还原度等方面处理不足的问题,本文提出了一种基于... 图像超分辨重建技术可以将低分辨率的图像转换成具有更高像素密度和更清晰细节的高分辨率图像,在军事、医学等领域发挥着重要作用。针对现有的图像超分辨率重建算法仍存在纹理细节、色彩还原度等方面处理不足的问题,本文提出了一种基于坐标注意力机制的多级残差跳跃连接网络(MRSCN),并将其应用于SRGAN模型,以实现对低分辨率图像特征的充分利用,判别模型引入PatchGAN思想,用于恢复图像细节,同时使用Charbonnier损失和TV损失对感知损失进行优化。该算法在Set5、Set14、Bsd100和Urban100数据集上进行4倍超分辨率重建测试,相对于其他常用的超分辨算法,本算法在重建图像时能够更好地保留纹理细节,得到的图像细节更加清晰,视觉效果更好并且有效降低了网络的参数量。客观评价指标方面,PSNR平均值相比原来的SRGAN提高了0.503 dB,SSIM平均值提高了0.007 6。 展开更多
关键词 图像超分辨率重建 SRGAN 坐标注意力机制 多级残差跳跃连接网络 patchgan
在线阅读 下载PDF
基于改进CGAN网络的图像去雾算法
2
作者 程园园 程晓荣 《计算机与数字工程》 2025年第3期845-850,876,共7页
为了解决雾天图像与视频的质量大幅度下降的问题,提出了基于改进条件生成对抗网络(CGAN)的图像去雾方法。在传统的生成器中设计添加残差网络模块以及密集空洞空间金字塔池化(DenseASPP)模块来实现多尺度特征的提取,提高特征利用率,增强... 为了解决雾天图像与视频的质量大幅度下降的问题,提出了基于改进条件生成对抗网络(CGAN)的图像去雾方法。在传统的生成器中设计添加残差网络模块以及密集空洞空间金字塔池化(DenseASPP)模块来实现多尺度特征的提取,提高特征利用率,增强生成图像的去雾细节保持。判别器使用34×34的PatchGAN进行分块判定,提高图像判别准确度。在合成有雾数据集RESIDE中,通过与暗通道算法、DehazeNet、AOD-Net、传统CGAN算法进行对比,主观上可以看出该网络模型的雾残留少,细节信息的保持和色彩对比度都有所提高。通过峰值信噪比(PSNR)和结构相似度(SSIM)结果对比,客观表明该网络模型恢复无雾图像的效果得到了提升。 展开更多
关键词 单幅图像去雾 条件生成对抗网络 残差网络 DenseASPP patchgan
在线阅读 下载PDF
Image Super-Resolution Reconstruction Model Based on SRGAN
3
作者 LU Xin-ya CHEN Jia-yi +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第5期21-28,共8页
Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual... Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual perception,significantly increasing the utility of low-resolution images.In this study,an improved image superresolution reconstruction model based on Generative Adversarial Networks(SRGAN)was proposed.This model introduced a channel and spatial attention mechanism(CSAB)in the generator,allowing it to effectively leverage the information from the input image to enhance feature representations and capture important details.The discriminator was designed with an improved PatchGAN architecture,which more accurately captured local details and texture information of the image.With these enhanced generator and discriminator architectures and an optimized loss function design,this method demonstrated superior performance in image quality assessment metrics.Experimental results showed that this model outperforms traditional methods,presenting more detailed and realistic image details in the visual effects. 展开更多
关键词 Image super-resolution reconstruction Generative Adversarial Networks CSAB patchgan architecture
在线阅读 下载PDF
基于改进自编码器结构的轮胎缺陷检测 被引量:2
4
作者 李洪奎 陈浩 +2 位作者 刘韵婷 张兴伟 冯欣悦 《电子测量与仪器学报》 CSCD 北大核心 2024年第10期170-179,共10页
针对部分轮胎X光缺陷图像中缺陷对比度较低、缺陷占比较小,导致缺陷难以检测的问题,采用了一种基于生成对抗网络的改进模型,以提高轮胎缺陷的检测精度。首先分析了传统生成器所存在的一些问题,然后以GANomaly作为基础模型,引入了注意力... 针对部分轮胎X光缺陷图像中缺陷对比度较低、缺陷占比较小,导致缺陷难以检测的问题,采用了一种基于生成对抗网络的改进模型,以提高轮胎缺陷的检测精度。首先分析了传统生成器所存在的一些问题,然后以GANomaly作为基础模型,引入了注意力机制模块NAM、流对齐模块FAM和PatchGAN,旨在增强模型的特征提取能力和图像重构能力。注意力机制模块NAM通过归一化处理增强了模型对缺陷区域的关注度,流对齐模块能够将低分辨率特征图中的特征点精确地映射到高分辨率特征图的对应位置,从而确保多尺度特征之间的信息一致性和有效融合,而PatchGAN则通过局部判别器增强了模型对局部特征的识别能力。为了验证改进模型的有效性,在相同的自制数据集上对4种轮胎缺陷类型X光图片进行测试。测试结果表明,改进后的模型在受试者工作特征曲线面积(AUC)和平均精度(AP)两个关键指标上均取得了显著提升,AUC值达到了96.4%,AP值达到了95.8%。这些结果表明,改进后的模型有效增强了特征提取和图像重构的能力,提升了缺陷检测的精准度。 展开更多
关键词 生成对抗网络 NAM 深度学习 FAM 轮胎缺陷检测 patchgan
原文传递
一种结合卷积自编码和补丁惩罚的生成对抗网络单图像去雨方法 被引量:3
5
作者 陈铭 赵嘉 +2 位作者 侯家振 韩龙哲 谭德坤 《电光与控制》 CSCD 北大核心 2024年第2期83-91,共9页
针对传统的图像去雨方法存在去雨图像失真、生成伪影等问题,提出一种结合卷积自编码和补丁惩罚的生成对抗网络单图像去雨方法。首先,该方法采用卷积自编码组成生成器网络,使用对称跳跃连接提高生成器网络的训练效率和收敛性能,实现对图... 针对传统的图像去雨方法存在去雨图像失真、生成伪影等问题,提出一种结合卷积自编码和补丁惩罚的生成对抗网络单图像去雨方法。首先,该方法采用卷积自编码组成生成器网络,使用对称跳跃连接提高生成器网络的训练效率和收敛性能,实现对图像细节信息和二维信号空间信息的重构;其次,引入马尔可夫鉴别器在图像补丁层次上进行惩罚,去除生成图像中的伪影;最后,提出一种新的精细化损失函数参与训练网络模型,进一步增强模型的去雨深度。采用峰值信噪比和结构相似性作为模型的评价标准,实验结果表明,该方法在现实雨图和合成雨图的去雨处理上都有良好的表现,基本还原了图像细节内容,并保证了较高的视觉质量。 展开更多
关键词 图像去雨 生成对抗网络 卷积自编码 马尔可夫鉴别器 峰值信噪比 结构相似性
在线阅读 下载PDF
基于SRGAN改进的人脸图像超分辨率重构算法研究 被引量:1
6
作者 于国庆 杨东瀚 +1 位作者 睢丙东 李宏哲 《科技风》 2022年第5期66-68,共3页
本文研究基于SRGAN改进的人脸超分辨率重构算法,在生成器网络的残差单元中加入了自注意力卷积模块,以提高网络训练中高频特征提取能力,在判别器网络中引入PatchGAN思想,强化判别器网络对高频特征细节的判别能力,关注更多的局部纹理细节... 本文研究基于SRGAN改进的人脸超分辨率重构算法,在生成器网络的残差单元中加入了自注意力卷积模块,以提高网络训练中高频特征提取能力,在判别器网络中引入PatchGAN思想,强化判别器网络对高频特征细节的判别能力,关注更多的局部纹理细节,提高重构人脸图像质量。同时将WN层替换原有GAN中的BN层,在保证网络训练速度的前提下提高网络模型的稳定性并恢复出更高质量的人脸图像。 展开更多
关键词 SRGAN 自注意力卷积模块 patchgan[3]
在线阅读 下载PDF
基于扩张卷积的图像修复 被引量:10
7
作者 冯浪 张玲 张晓龙 《计算机应用》 CSCD 北大核心 2020年第3期825-831,共7页
现有图像修复方法虽然能够补全图像缺失区域的内容,但是仍然存在结构扭曲、纹理模糊、内容不连贯等问题,无法满足人们视觉上的要求。针对这些问题,提出一种基于扩张卷积的图像修复方法,通过引入扩张卷积的思想增大感受野来提升图像修复... 现有图像修复方法虽然能够补全图像缺失区域的内容,但是仍然存在结构扭曲、纹理模糊、内容不连贯等问题,无法满足人们视觉上的要求。针对这些问题,提出一种基于扩张卷积的图像修复方法,通过引入扩张卷积的思想增大感受野来提升图像修复的质量。该方法基于生成对抗网络(GAN)的思想,分为生成网络和对抗网络。生成网络包括全局内容修复网络和局部细节修复网络,并使用gated卷积动态地学习图像特征,解决了使用传统卷积神经网络方法无法较好地补全大面积不规则缺失区域的问题。首先利用全局内容修复网络获得一个初始的内容补全结果,之后再通过局部细节修复网络对局部纹理细节进行修复。对抗网络由SN-PatchGAN鉴别器构成,用于评判图像修复效果的好坏。实验结果表明,与目前存在的图像修复方法相比,该方法在峰值信噪比(PSNR)、结构相似性(SSIM)、inception分数3个指标上都有较大的提升;而且该方法有效解决了传统修复方法出现的纹理模糊问题,较好地满足了人们的视觉连贯性,证实了提出的方法的有效性和可行性。 展开更多
关键词 图像修复 扩张卷积 生成对抗网络 纹理信息 SN-patchgan鉴别器
在线阅读 下载PDF
改进的生成对抗网络图像超分辨率重建 被引量:15
8
作者 李诚 张羽 黄初华 《计算机工程与应用》 CSCD 北大核心 2020年第4期191-196,共6页
近年来,生成对抗网络在约束图像生成方面表现出了较好的潜力,使其适用于图像超分辨率重建。针对基于卷积神经网络的图像超分辨率重建算法存在的特征信息利用率低的问题,基于生成对抗网络框架,提出了残差密集生成对抗网络的超分辨率重建... 近年来,生成对抗网络在约束图像生成方面表现出了较好的潜力,使其适用于图像超分辨率重建。针对基于卷积神经网络的图像超分辨率重建算法存在的特征信息利用率低的问题,基于生成对抗网络框架,提出了残差密集生成对抗网络的超分辨率重建算法。该算法定义生成器网络、判别器网络,通过构建残差密集网络作为生成器网络及PatchGAN作为判别器网络,以解决基于卷积神经网络的超分辨率算法中特征信息利用率低以及生成对抗网络收敛慢的问题。该重建算法在Set5等标准数据集上与主流的超分辨率重建算法进行对比,实验表明,该算法能够有效地提高特征信息利用率,较好地恢复低分辨率图像的细节信息,提高图像重建的质量。 展开更多
关键词 超分辨率重建 生成对抗网络 残差密集网络 patchgan
在线阅读 下载PDF
基于目标检测的海上舰船图像超分辨率研究 被引量:1
9
作者 张坤 李天伟 《图像与信号处理》 2019年第3期121-129,共9页
针对海上舰船图像有效像素在整体像素中占比小的问题,提出一种基于目标检测网络的超分辨率方法。该方法包含两个阶段,结合bicubic变换,逐步地将图像的清晰度从粗到细地进行恢复。首先,第一阶段通过目标检测网络,检测出原图像中需要超分... 针对海上舰船图像有效像素在整体像素中占比小的问题,提出一种基于目标检测网络的超分辨率方法。该方法包含两个阶段,结合bicubic变换,逐步地将图像的清晰度从粗到细地进行恢复。首先,第一阶段通过目标检测网络,检测出原图像中需要超分辨率的区域,然后,第二阶段将对应区域通过bicubic变换调整至指定分辨率,而后通过生成对抗网络增强图像细节。最终在自建数据集上的实验结果表明,与传统方法和现有基于深度神经网路的超分辨率重建算法相比,该算法不仅图像视觉效果最好,而且在数据集上的峰值信噪比(PSNR)平均提高了0.79 dB,结构相似性(SSIM)平均提高了0.04,证明了该算法的有效性。 展开更多
关键词 目标检测 生成对抗网络 超分辨率 U-Net patchgan
在线阅读 下载PDF
DenseNet生成对抗网络低照度图像增强方法 被引量:13
10
作者 王照乾 孔韦韦 +1 位作者 滕金保 田乔鑫 《计算机工程与应用》 CSCD 北大核心 2022年第8期214-220,共7页
针对低照度环境下采集图像存在低信噪比、低分辨率和低照度的问题,提出了一种基于稠密连接网络(DenseNet)生成对抗网络的低照度图像增强方法。利用DenseNet框架建立生成器网络,并将PatchGAN作为判别器网络;将低照度图像传入生成器网络... 针对低照度环境下采集图像存在低信噪比、低分辨率和低照度的问题,提出了一种基于稠密连接网络(DenseNet)生成对抗网络的低照度图像增强方法。利用DenseNet框架建立生成器网络,并将PatchGAN作为判别器网络;将低照度图像传入生成器网络生成照度增强图像,同时利用判别器网络负责监督生成器对低照度图像的增强效果,通过生成器和判别器二者间的博弈不断优化网络权重,最终使得生成器对低照度图像具有较好的增强效果。实验结果表明,该方法与现有主流方法相比较,不仅在对低照度图像亮度增强、清晰度还原等方面优势明显,且在峰值信噪比和结构相似度等图像质量客观评价指标方面也具有显著的优势。 展开更多
关键词 低照度图像增强 生成对抗网络 稠密连接网络 patchgan
在线阅读 下载PDF
基于CycleGAN的灰度图像彩色化方法 被引量:3
11
作者 陈宗楠 叶耀光 潘家辉 《计算机系统应用》 2023年第8期126-132,共7页
当前主流的图片彩色化方法包括传统算法和深度学习方法.随着深度学习模型的发展,基于深度学习的灰度图像彩色化方法能带来更好的着色效果,但仍然存在细节损失和着色枯燥问题.针对上述问题,本文将CycleGAN模型应用在非单一类别的灰度图... 当前主流的图片彩色化方法包括传统算法和深度学习方法.随着深度学习模型的发展,基于深度学习的灰度图像彩色化方法能带来更好的着色效果,但仍然存在细节损失和着色枯燥问题.针对上述问题,本文将CycleGAN模型应用在非单一类别的灰度图像彩色化上,使其在动物、植物、风景等图片上有逼真的着色效果.模型结构上对CycleGAN模型的激活函数加以改进,在生成器使用PReLU激活函数,使模型更易于训练.在判别器使用PatchGAN提高图片高分辨率上的颜色细节.通过ImageNet数据集5个热门类别图像的训练后,模型对动植物与风景图彩色化的效果十分逼真.在图像评估指标中,该模型在PSNR中比GAN高了0.603 dB约有2.1%的提升,在SSIM中明显高于其他模型,在效果上有5.1%的提升.从视觉感受来看,通过CycleGAN彩色化的图片饱和度更高,在视觉真实性上高于VGG和GAN等模型,解决了着色枯燥问题,而且更容易还原图片中的颜色细节,避免细节损失. 展开更多
关键词 深度学习 图像处理 灰度图像彩色化 循环生成对抗网络 马尔可夫判别器 残差神经网络
在线阅读 下载PDF
基于级联残差生成对抗网络的低照度图像增强 被引量:6
12
作者 陈清江 屈梅 《激光与光电子学进展》 CSCD 北大核心 2020年第14期215-224,共10页
针对现存的低照度图像视觉效果差和图像质量低的问题,提出了一种基于级联残差生成对抗网络的低照度图像增强算法,该算法将构建的级联残差卷积神经网络作为生成器网络和改进的PatchGAN作为判别器网络。首先根据Retinex理论,通过正常照度... 针对现存的低照度图像视觉效果差和图像质量低的问题,提出了一种基于级联残差生成对抗网络的低照度图像增强算法,该算法将构建的级联残差卷积神经网络作为生成器网络和改进的PatchGAN作为判别器网络。首先根据Retinex理论,通过正常照度图像合成训练样本,再将低照度图像从RGB空间转换到HSV颜色空间,保持色调分量和饱和度分量不变,利用级联残差生成器网络对亮度分量增强。通过判别器网络监督生成器网络不断增强低照度图像,二者相互博弈,最终使生成器网络具备较好的低照度图像增强的能力。实验结果表明,本文增强算法在合成的低照度图像和自然的低照度图像上,获得了更为良好的视觉效果和对比度,特别在合成的低照度图像上,其峰值信噪比和结构相似度明显优于其他对比算法。 展开更多
关键词 图像处理 低照度图像增强 生成对抗网络 级联残差网络 patchgan 多尺度映射
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部