In this paper,we present a high peak power passively Q-switched intracavity frequency-doubled green laser based on an efficient LED-pumped Nd:YAG dual-rod laser module.In quasi-continuous wave(QCW)running operation,th...In this paper,we present a high peak power passively Q-switched intracavity frequency-doubled green laser based on an efficient LED-pumped Nd:YAG dual-rod laser module.In quasi-continuous wave(QCW)running operation,the average output power of the fundamental laser at 1064 nm reaches as high as 20.98 W at a repetition rate of 50 Hz with a maximum single pulse energy of 419.6 mJ,corresponding to a maximum optical conversion efficiency of 38.8%and a slope efficiency of 41%.展开更多
This paper investigates the configuration design associated with boundary-constrained swarm flying.An analytic swarm configuration is identified to ensure the passive safety between each pair of spacecraft in the radi...This paper investigates the configuration design associated with boundary-constrained swarm flying.An analytic swarm configuration is identified to ensure the passive safety between each pair of spacecraft in the radial-cross-track plane.For the first time,this work derives the explicit configurable spacecraft amount to clarify the configuration's accommodation capacity while considering the maximum inter-spacecraft separation constraint.For larger-scale design problem that involves hundreds of spacecraft,this paper proposes an optimization framework that integrates a Relative Orbit Element(ROE)affine transformation operation and successional convex optimization.The framework establishes a multi-subcluster swarm structure,allowing decoupling the maintenance issues of each subcluster.Compared with previous design methods,it ensures that the computational cost for constraints verification only scales linearly with the swarm size,while also preserving the configuration optimization capacities.Numerical simulations demonstrate that the proposed analytic configuration strictly meets the design constraints.It is also shown that the proposed framework reduces the handled constraint amount by two orders compared with direct optimization,while achieving a remarkable swarm safety enhancement based on the existing analytic configuration.展开更多
We presented a passively Q-switched(PQS) diode-pumped c-cut Tm, Ho:LuVO_4 laser with a black phosphorus saturable absorber for the first time.Under PQS mode, an average output power of 0.86 W and a peak power of 2.32 ...We presented a passively Q-switched(PQS) diode-pumped c-cut Tm, Ho:LuVO_4 laser with a black phosphorus saturable absorber for the first time.Under PQS mode, an average output power of 0.86 W and a peak power of 2.32 W were acquired from the Tm, Ho:LuVO4 laser with the pump power of 14.55 W, corresponding to a pulse width of 2.89 μs,a pulse repetition rate of 71.84 kHz, and a pulse energy of about 6.70 μJ.展开更多
We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by contro...We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the intercavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.展开更多
A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength oper...A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.展开更多
A quarter-wave plate and the thin film polarizer (TFP) are used for the LD end-pumped passively mode-locked Nd:YVO4 laser with semiconductor saturable absorber mirror (SESAM) to obtain a single beam output with a...A quarter-wave plate and the thin film polarizer (TFP) are used for the LD end-pumped passively mode-locked Nd:YVO4 laser with semiconductor saturable absorber mirror (SESAM) to obtain a single beam output with a total power of 4.8 W. An optical-optical efficiency is achieved to be 24% for a stable CW mode-locking operation at 1064 nm, with a pulse repetition rate of 70 MHz and pulse width of 16 ps. The multipulse in the pulse sequence is eliminated for reaching a peak power as high as 4 kW.展开更多
A low cost and simply fabricated reflective graphene oxide is successfully made. By using this absorber, as well as an end reflector, we obtain a passively mode-locked Yb:LuYSiO5 laser operating at nearly 1 p,m. When...A low cost and simply fabricated reflective graphene oxide is successfully made. By using this absorber, as well as an end reflector, we obtain a passively mode-locked Yb:LuYSiO5 laser operating at nearly 1 p,m. When the pump power is increased up to 5.73 W, stable mode locking is achieved. The central wavelength of the laser spectrum is 1043.2 nm with a pulse duration of 5.0 ps. When the pump power reaches 8.16 W, dual-wavelength mode locking laser pulses at 1036.3 nm and 1043.5 nm are simultaneously detected.展开更多
We demonstrate a diode-pumped passively cw mode-locked Nd:CaGdAlO4 laser operating at 1079nm with a semiconductor saturable absorber mirror for the first time to the best of our knowledge. The threshold pump power of...We demonstrate a diode-pumped passively cw mode-locked Nd:CaGdAlO4 laser operating at 1079nm with a semiconductor saturable absorber mirror for the first time to the best of our knowledge. The threshold pump power of the laser is 180mW. A maximum average output power of 93mW is obtained under the pump power of 1.94 W. The pulse duration of the mode-locked pulses is 3.1ps and the repetition rate is 157MHz.展开更多
We present a laser-diode-pumped passively mode-locked femtosecond disordered crystal laser by using Nd:CaGdAI04 (Nd:CGA) as the gain medium. With a pair of SF6 prisms to control the dispersion compensation, laser ...We present a laser-diode-pumped passively mode-locked femtosecond disordered crystal laser by using Nd:CaGdAI04 (Nd:CGA) as the gain medium. With a pair of SF6 prisms to control the dispersion compensation, laser pulses as short as 850fs at 1079nm are obtained with a repetition rate of 124.6 MHz. The measured threshold pump power is 1.45 W. A maximum average output power of 122mW is obtained under the pump power of 5.9 W. These results show that Nd:CGA could be a promising laser medium for generating femtosecond ultrashort pulse at about 1 μm.展开更多
A high-power passively Q-switched Nd:YAG laser operating at lll2nm with Cr4+:yAO as a saturable absorber is demonstrated. Under 808 nm diode-direct pumping, the maximum average output power of 2.73 W is achieved at...A high-power passively Q-switched Nd:YAG laser operating at lll2nm with Cr4+:yAO as a saturable absorber is demonstrated. Under 808 nm diode-direct pumping, the maximum average output power of 2.73 W is achieved at the pump power of 16.65 W, corresponding to an optical-to-optical conversion efficiency of 16.4%. At the same time, the pulse width, pulse repetition rate, single pulse energy and peak power are 27.2ns, 9 kHz, 303.3#3 and 11.2kW, respectively. As far as we know, the result gives the highest average output power at 1112nm generated by an 808 nm diode-end-pumped Nd:YAG laser.展开更多
The understanding of soliton dynamics promotes the development of ultrafast laser technology. High-energy purequartic solitons(PQSs) have gradually become a hotspot in recent years. Herein, we numerically study the in...The understanding of soliton dynamics promotes the development of ultrafast laser technology. High-energy purequartic solitons(PQSs) have gradually become a hotspot in recent years. Herein, we numerically study the influence of the gain bandwidth, saturation power, small-signal gain, and output coupler on PQS dynamics in passively mode-locked fiber lasers. The results show that the above four parameters can affect PQS dynamics. Pulsating PQSs occur as we alter the other three parameters when the gain bandwidth is 50 nm. Meanwhile, PQSs evolve from pulsating to erupting and then to splitting as the other three parameters are altered when the gain bandwidth is 10 nm, which can be attributed to the existence of the spectral filtering effect and intra-cavity fourth-order dispersion. These findings provide new insights into PQS dynamics in passively mode-locked fiber lasers.展开更多
Performance of an LD-end-pumped passively Q-switched Nd: YA G/Cr4+ : YA G microchip laser operating at 1123 nm is studied. A maximum average output power of 517row with an optical-to-optical conversion efficiency o...Performance of an LD-end-pumped passively Q-switched Nd: YA G/Cr4+ : YA G microchip laser operating at 1123 nm is studied. A maximum average output power of 517row with an optical-to-optical conversion efficiency of 12.6% and a slope efficiency of 25.8% is obtained under a pump power of 4.1 W. A minimum pulse width of 1.1 ns with a pulse repetition rate of 20.2kHz is obtained, and the corresponding pulse energy and peak power are 25.6μJ and 23.3kW, respectively. To our knowledge, the 23.3kW peak power is the highest among 1123nm lasers. Additionally, based on the 1123 nm laser, with LBO as the frequency doubler, a 288-mW green-yellow laser at 561 nm is successfully achieved.展开更多
We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film ...We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film as a saturable absorber(SA). A Brewster polarizer(BP) and a birefringent crystal(BC) are incorporated to enable frequency selection and filtering for the passively Q-switched 1123 nm pulsed laser to improve the power stability and reduce the noise. When the pump power is 5.1 W, an average output power of 457.9 m W is obtained, corresponding to a repetition frequency of 1.09 MHz,a pulse width of 56 ns, a spectral line width of 0.65 nm, a power instability of ±0.92%, and a laser noise of 0.89%.The successful implementation of the “Ti_(3)C_(2)T_(x)-PVA film passively Q-switching” combined with “frequency selection and filtering of BP + BC” technology path provides a valuable reference for developing pulsed laser with high repetition frequency, high stability and low noise.展开更多
A low phase noise millimeter-wave(MMW) signal generator is proposed and experimentally demonstrated with a C-band passively Fabry-Pérot(F-P) quantum dot mode-locked laser. A novel method is proposed to generate l...A low phase noise millimeter-wave(MMW) signal generator is proposed and experimentally demonstrated with a C-band passively Fabry-Pérot(F-P) quantum dot mode-locked laser. A novel method is proposed to generate low phase noise MMW signal, which is simply based on a commercial off-the-shelf dual-driven Li Nb O3 Mach-Zehnder modulator and a passively F-P quantum dot mode-locked laser. MMW signal with the frequency of 30 GHz, 45 GHz and 90 GHz respectively is obtained experimentally. Single-sideband phase noise of the 30 GHz and 45 GHz MMW signal is-112 d Bc/Hz and-106 d Bc/Hz at an offset of 1 k Hz, respectively. The linewidth of the 30 GHz and 45 GHz MMW signal is about from 225 Hz and 239 Hz. This is considered a very simple MMW generator with a quasi-tunable broadband and ultra-low phase noise.展开更多
A Co^2+:spinel passively Q-switched erbium-ytterbium-phosphate glass bonded laser pumped at 940 nm is reported.A pulse energy of 210 μJ, a peak power over 70 kW, and beam quality M-2 parameter of 1.2 are obtained u...A Co^2+:spinel passively Q-switched erbium-ytterbium-phosphate glass bonded laser pumped at 940 nm is reported.A pulse energy of 210 μJ, a peak power over 70 kW, and beam quality M-2 parameter of 1.2 are obtained under a pump power of 235 mW. An unbonded laser output experiment with the same dimension of the active material and the saturable absorber as the bonded laser output experiment is carried out. The reason why the output in the bonded laser is improved is determined.展开更多
We present a model of passively Q-switched Raman lasers by utilizing the rate equations. The intracavity fun-damental photon density, Raman photon density and the initial population-inversion density of the gain mediu...We present a model of passively Q-switched Raman lasers by utilizing the rate equations. The intracavity fun-damental photon density, Raman photon density and the initial population-inversion density of the gain medium are assumed to be of Gaussian spatial distributions. These rate equations are normalized by introducing some synthetic parameters and solved numerically, and a group of general curves are generated. Prom these curves we can understand the dependence of the Raman laser pulse characteristics on the parameters about the pumping, the gain medium, the Raman medium and the resonator. An illustrative calculation for a passively Q-switched Nd^3+:GdVO4 self-Raman laser is presented to demonstrate the usage of the curves and related formulas.展开更多
A single-photon interferometer is a fundamental element in quantum information science.In most previously reported works,single-photon interferometers use an active feedback locking system to stabilize the relative ph...A single-photon interferometer is a fundamental element in quantum information science.In most previously reported works,single-photon interferometers use an active feedback locking system to stabilize the relative phase between two arms of the interferometer.Here,we use a pair of beam displacers to construct a passively stable single-photon interferometer.The relative phase stabilization between the two arms is achieved by stabilizing the temperature of the beam displacers.A purely polarized single-photon-level pulse is directed into the interferometer input port.By analyzing and measuring the polarization states of the single-photon pulse at the output port,the achieved polarization fidelity of the interferometer is about 99.1±0.1%.Our passively stabilized single-photon interferometer provides a key element for generating highfidelity entanglement between a photon and atomic memory.展开更多
In this paper, we adopt cloud computing in a specific scientific computing field for its virtualization, distribution and dynamic extendibility as follows: We obtain high-energy parabolic self-similar pulses by numeri...In this paper, we adopt cloud computing in a specific scientific computing field for its virtualization, distribution and dynamic extendibility as follows: We obtain high-energy parabolic self-similar pulses by numerical simulation using our non-distributed passively mode-locked Er-doped fiber laser model. For researching characteristics of these wave-breaking-free self-similar pulses, chirp of them must be extracted. We propose several time-frequency analysis methods adopted in chirp extraction of ultra-short optical pulses for the first time and discuss the advantages and disadvantages of them in this particular application.展开更多
We demonstrate a passively harmonic mode-locked(PHML) fiber laser operating at the L-band using carbon nanotubes polyvinyl alcohol(CNTs-PVA) film. Under suitable pump power and an appropriate setting of the polari...We demonstrate a passively harmonic mode-locked(PHML) fiber laser operating at the L-band using carbon nanotubes polyvinyl alcohol(CNTs-PVA) film. Under suitable pump power and an appropriate setting of the polarization controller(PC), the 54^(th) harmonic pulses at the L-band are generated with the side mode suppression ratio(SMSR) better than 44 dB and a repetition frequency of 503.37 MHz. Further increasing the pump power leads to a higher frequency of 550 MHz with compromised stability of 38.5 dB SMSR. To the best of our knowledge, this is the first demonstration on the generation of L-band PHML pulses from an Er-doped fiber laser based on CNTs.展开更多
The bound solitons in a passively mode-locked fibre ring laser are observed and their formation mechanism is summarized in this paper. In order to obtain stable bound solitons, a strong CW laser field at the centre of...The bound solitons in a passively mode-locked fibre ring laser are observed and their formation mechanism is summarized in this paper. In order to obtain stable bound solitons, a strong CW laser field at the centre of the soliton spectral is necessary to suppress and synchronize the random soliton phase variations.展开更多
基金supported by the Nanjing University of Posts and Telecommunications Foundation,China(Grant Nos.JUH219002 and JUH219007)the Key R&D Program of Shandong Province,China(Grant No.2021CXGC010202)。
文摘In this paper,we present a high peak power passively Q-switched intracavity frequency-doubled green laser based on an efficient LED-pumped Nd:YAG dual-rod laser module.In quasi-continuous wave(QCW)running operation,the average output power of the fundamental laser at 1064 nm reaches as high as 20.98 W at a repetition rate of 50 Hz with a maximum single pulse energy of 419.6 mJ,corresponding to a maximum optical conversion efficiency of 38.8%and a slope efficiency of 41%.
基金co-supported by the National Natural Science Foundation of China(Nos.52272408,U21B2008)the Guangdong Basic and Applied Basic Research Foundation,China(No.2023B1515120018)。
文摘This paper investigates the configuration design associated with boundary-constrained swarm flying.An analytic swarm configuration is identified to ensure the passive safety between each pair of spacecraft in the radial-cross-track plane.For the first time,this work derives the explicit configurable spacecraft amount to clarify the configuration's accommodation capacity while considering the maximum inter-spacecraft separation constraint.For larger-scale design problem that involves hundreds of spacecraft,this paper proposes an optimization framework that integrates a Relative Orbit Element(ROE)affine transformation operation and successional convex optimization.The framework establishes a multi-subcluster swarm structure,allowing decoupling the maintenance issues of each subcluster.Compared with previous design methods,it ensures that the computational cost for constraints verification only scales linearly with the swarm size,while also preserving the configuration optimization capacities.Numerical simulations demonstrate that the proposed analytic configuration strictly meets the design constraints.It is also shown that the proposed framework reduces the handled constraint amount by two orders compared with direct optimization,while achieving a remarkable swarm safety enhancement based on the existing analytic configuration.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61775053,51572053,51777046,and 61705140)
文摘We presented a passively Q-switched(PQS) diode-pumped c-cut Tm, Ho:LuVO_4 laser with a black phosphorus saturable absorber for the first time.Under PQS mode, an average output power of 0.86 W and a peak power of 2.32 W were acquired from the Tm, Ho:LuVO4 laser with the pump power of 14.55 W, corresponding to a pulse width of 2.89 μs,a pulse repetition rate of 71.84 kHz, and a pulse energy of about 6.70 μJ.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60372061)the Scientific Forefront and Interdisciplinary Innovation Project of Jilin University, China (Grant No. 200903296)
文摘We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the intercavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632704
文摘A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.
基金Project supported by the State Key Laboratory of Tribology,Tsinghua University (Grant No. SKLT08A05)
文摘A quarter-wave plate and the thin film polarizer (TFP) are used for the LD end-pumped passively mode-locked Nd:YVO4 laser with semiconductor saturable absorber mirror (SESAM) to obtain a single beam output with a total power of 4.8 W. An optical-optical efficiency is achieved to be 24% for a stable CW mode-locking operation at 1064 nm, with a pulse repetition rate of 70 MHz and pulse width of 16 ps. The multipulse in the pulse sequence is eliminated for reaching a peak power as high as 4 kW.
基金support by the National Natural Science Foundation of China (Grant No. 61078032)the Science and Technology Projects Plan of Jinan City, China (Grant No. 201004007)+2 种基金the State Key Laboratory of Crystal Materials, China (Grant No. KF1201)the Research Grants Council of Hong Kong, China (Grant No. GRF 526511 PolyU code: B-Q26E)the Hong Kong Polytechnic University, China (Grant No. G-YJ20)
文摘A low cost and simply fabricated reflective graphene oxide is successfully made. By using this absorber, as well as an end reflector, we obtain a passively mode-locked Yb:LuYSiO5 laser operating at nearly 1 p,m. When the pump power is increased up to 5.73 W, stable mode locking is achieved. The central wavelength of the laser spectrum is 1043.2 nm with a pulse duration of 5.0 ps. When the pump power reaches 8.16 W, dual-wavelength mode locking laser pulses at 1036.3 nm and 1043.5 nm are simultaneously detected.
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB922402the International Joint Research Program of the National Natural Science Foundation of China under Grant No 61210017
文摘We demonstrate a diode-pumped passively cw mode-locked Nd:CaGdAlO4 laser operating at 1079nm with a semiconductor saturable absorber mirror for the first time to the best of our knowledge. The threshold pump power of the laser is 180mW. A maximum average output power of 93mW is obtained under the pump power of 1.94 W. The pulse duration of the mode-locked pulses is 3.1ps and the repetition rate is 157MHz.
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB922402the International Joint Research Program,and the National Natural Science Foundation of China under Grant Nos 61210017 and 11434016
文摘We present a laser-diode-pumped passively mode-locked femtosecond disordered crystal laser by using Nd:CaGdAI04 (Nd:CGA) as the gain medium. With a pair of SF6 prisms to control the dispersion compensation, laser pulses as short as 850fs at 1079nm are obtained with a repetition rate of 124.6 MHz. The measured threshold pump power is 1.45 W. A maximum average output power of 122mW is obtained under the pump power of 5.9 W. These results show that Nd:CGA could be a promising laser medium for generating femtosecond ultrashort pulse at about 1 μm.
基金Supported by the Natural Science Foundation of Shandong Province under Grant Nos ZR2015FM018 and ZR2014FM028the National Natural Science Foundation of China under Grant No 61475086
文摘A high-power passively Q-switched Nd:YAG laser operating at lll2nm with Cr4+:yAO as a saturable absorber is demonstrated. Under 808 nm diode-direct pumping, the maximum average output power of 2.73 W is achieved at the pump power of 16.65 W, corresponding to an optical-to-optical conversion efficiency of 16.4%. At the same time, the pulse width, pulse repetition rate, single pulse energy and peak power are 27.2ns, 9 kHz, 303.3#3 and 11.2kW, respectively. As far as we know, the result gives the highest average output power at 1112nm generated by an 808 nm diode-end-pumped Nd:YAG laser.
基金the financial support from Science and Technology Project of the Jilin Provincial Department of Education (Grant No. JJKH20231171KJ)。
文摘The understanding of soliton dynamics promotes the development of ultrafast laser technology. High-energy purequartic solitons(PQSs) have gradually become a hotspot in recent years. Herein, we numerically study the influence of the gain bandwidth, saturation power, small-signal gain, and output coupler on PQS dynamics in passively mode-locked fiber lasers. The results show that the above four parameters can affect PQS dynamics. Pulsating PQSs occur as we alter the other three parameters when the gain bandwidth is 50 nm. Meanwhile, PQSs evolve from pulsating to erupting and then to splitting as the other three parameters are altered when the gain bandwidth is 10 nm, which can be attributed to the existence of the spectral filtering effect and intra-cavity fourth-order dispersion. These findings provide new insights into PQS dynamics in passively mode-locked fiber lasers.
基金Supported by the Foundation of Shandong Province under Grant No J13LN28the National Natural Science Foundation of China under Grant No 11304184
文摘Performance of an LD-end-pumped passively Q-switched Nd: YA G/Cr4+ : YA G microchip laser operating at 1123 nm is studied. A maximum average output power of 517row with an optical-to-optical conversion efficiency of 12.6% and a slope efficiency of 25.8% is obtained under a pump power of 4.1 W. A minimum pulse width of 1.1 ns with a pulse repetition rate of 20.2kHz is obtained, and the corresponding pulse energy and peak power are 25.6μJ and 23.3kW, respectively. To our knowledge, the 23.3kW peak power is the highest among 1123nm lasers. Additionally, based on the 1123 nm laser, with LBO as the frequency doubler, a 288-mW green-yellow laser at 561 nm is successfully achieved.
基金Project supported by the Serving Local Special Project of Shaanxi Provincial Department of Education of China (Grant No. 19JC040)the National Natural Science Foundation of China (Grant No. 61905193)。
文摘We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film as a saturable absorber(SA). A Brewster polarizer(BP) and a birefringent crystal(BC) are incorporated to enable frequency selection and filtering for the passively Q-switched 1123 nm pulsed laser to improve the power stability and reduce the noise. When the pump power is 5.1 W, an average output power of 457.9 m W is obtained, corresponding to a repetition frequency of 1.09 MHz,a pulse width of 56 ns, a spectral line width of 0.65 nm, a power instability of ±0.92%, and a laser noise of 0.89%.The successful implementation of the “Ti_(3)C_(2)T_(x)-PVA film passively Q-switching” combined with “frequency selection and filtering of BP + BC” technology path provides a valuable reference for developing pulsed laser with high repetition frequency, high stability and low noise.
基金supported by the Humanity and Social Science Foundation of Chinese Ministry of Education (No.19YJC880053)the Natural Science Foundation of Zhejiang Province (No.LQ18F010008)+3 种基金the Philosophy and Social Science Planning Project of Zhejiang Province (No.19NDJC0103YB)the Natural Science Foundation of Ningbo (No.2018A610092)the Research Fund Project of Ningbo Institute of Finance&Economics (No.1320171002)the Education and Teaching Reform Program of Ningbo Institute of Finance&Economics (No.20jyyb16)。
文摘A low phase noise millimeter-wave(MMW) signal generator is proposed and experimentally demonstrated with a C-band passively Fabry-Pérot(F-P) quantum dot mode-locked laser. A novel method is proposed to generate low phase noise MMW signal, which is simply based on a commercial off-the-shelf dual-driven Li Nb O3 Mach-Zehnder modulator and a passively F-P quantum dot mode-locked laser. MMW signal with the frequency of 30 GHz, 45 GHz and 90 GHz respectively is obtained experimentally. Single-sideband phase noise of the 30 GHz and 45 GHz MMW signal is-112 d Bc/Hz and-106 d Bc/Hz at an offset of 1 k Hz, respectively. The linewidth of the 30 GHz and 45 GHz MMW signal is about from 225 Hz and 239 Hz. This is considered a very simple MMW generator with a quasi-tunable broadband and ultra-low phase noise.
文摘A Co^2+:spinel passively Q-switched erbium-ytterbium-phosphate glass bonded laser pumped at 940 nm is reported.A pulse energy of 210 μJ, a peak power over 70 kW, and beam quality M-2 parameter of 1.2 are obtained under a pump power of 235 mW. An unbonded laser output experiment with the same dimension of the active material and the saturable absorber as the bonded laser output experiment is carried out. The reason why the output in the bonded laser is improved is determined.
基金Project supported by the National Natural Science Foundation of China (Grant No 60478017), the Science and Technology Development Program of Shandong Province, China and the Scientific Research Starting Foundation for Returned 0verseas Chinese Scholars, Ministry of Education, China.
文摘We present a model of passively Q-switched Raman lasers by utilizing the rate equations. The intracavity fun-damental photon density, Raman photon density and the initial population-inversion density of the gain medium are assumed to be of Gaussian spatial distributions. These rate equations are normalized by introducing some synthetic parameters and solved numerically, and a group of general curves are generated. Prom these curves we can understand the dependence of the Raman laser pulse characteristics on the parameters about the pumping, the gain medium, the Raman medium and the resonator. An illustrative calculation for a passively Q-switched Nd^3+:GdVO4 self-Raman laser is presented to demonstrate the usage of the curves and related formulas.
基金Project supported by the Ministry of Science and Technology of China(Grant No.2016YFA0301402)the National Natural Science Foundation of China(Grant No.12174235)Shanxi“1331 Project”Key Subjects Construction。
文摘A single-photon interferometer is a fundamental element in quantum information science.In most previously reported works,single-photon interferometers use an active feedback locking system to stabilize the relative phase between two arms of the interferometer.Here,we use a pair of beam displacers to construct a passively stable single-photon interferometer.The relative phase stabilization between the two arms is achieved by stabilizing the temperature of the beam displacers.A purely polarized single-photon-level pulse is directed into the interferometer input port.By analyzing and measuring the polarization states of the single-photon pulse at the output port,the achieved polarization fidelity of the interferometer is about 99.1±0.1%.Our passively stabilized single-photon interferometer provides a key element for generating highfidelity entanglement between a photon and atomic memory.
基金supported by National Natural Science Foundation of China and Scientific Forefront and Interdisciplinary Innovation Project, Jilin University under Grants No. 60372061,200903296
文摘In this paper, we adopt cloud computing in a specific scientific computing field for its virtualization, distribution and dynamic extendibility as follows: We obtain high-energy parabolic self-similar pulses by numerical simulation using our non-distributed passively mode-locked Er-doped fiber laser model. For researching characteristics of these wave-breaking-free self-similar pulses, chirp of them must be extracted. We propose several time-frequency analysis methods adopted in chirp extraction of ultra-short optical pulses for the first time and discuss the advantages and disadvantages of them in this particular application.
基金Project supported by the National Natural Science Foundation of China(Grant No.61605107)Young Eastern Scholar Program at Shanghai Institutions of Higher Learning,China(Grant No.QD2015027)+2 种基金the“Young 1000 Talent Plan”Program of Chinathe Open Program of the State Key Laboratory of Advanced Optical Communication Systems and Networks at Shanghai Jiaotong University,China(Grant No.2017GZKF17)RAEng/The Leverhulme Trust Senior Research Fellowships(Grant No.LTSRF1617/13/57).
文摘We demonstrate a passively harmonic mode-locked(PHML) fiber laser operating at the L-band using carbon nanotubes polyvinyl alcohol(CNTs-PVA) film. Under suitable pump power and an appropriate setting of the polarization controller(PC), the 54^(th) harmonic pulses at the L-band are generated with the side mode suppression ratio(SMSR) better than 44 dB and a repetition frequency of 503.37 MHz. Further increasing the pump power leads to a higher frequency of 550 MHz with compromised stability of 38.5 dB SMSR. To the best of our knowledge, this is the first demonstration on the generation of L-band PHML pulses from an Er-doped fiber laser based on CNTs.
基金Project supported by the Tianjin Key Project Foundation of China (Grant No 033183611) the National Natural Science Foundation of China (Grant No 60137010), and the National High Technology Research and Development Program of China (Grant No 2003AA312100).
文摘The bound solitons in a passively mode-locked fibre ring laser are observed and their formation mechanism is summarized in this paper. In order to obtain stable bound solitons, a strong CW laser field at the centre of the soliton spectral is necessary to suppress and synchronize the random soliton phase variations.