期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
TRANSFER MATRIX METHOD FOR ANALYZING VIBRATION AND DAMPING CHARACTERISTICS OF ROTATIONAL SHELL WITH PASSIVE CONSTRAINED LAYER DAMPING TREATMENT 被引量:5
1
作者 Jing Lu Yu Xiang +2 位作者 Yuying Huang Xiaoni Li Qiao Ni 《Acta Mechanica Solida Sinica》 SCIE EI 2010年第4期297-311,共15页
The first order differential matrix equations of the host shell and constrained layer for a sandwich rotational shell are derived based on the thin shell theory.Employing the layer wise principle and first order shear... The first order differential matrix equations of the host shell and constrained layer for a sandwich rotational shell are derived based on the thin shell theory.Employing the layer wise principle and first order shear deformation theory, only considering the shearing deformation of the viscoelastic layer, the integrated first order differential matrix equation of a passive constrained layer damping rotational shell is established by combining with the normal equilibrium equation of the viscoelastic layer.A highly precise transfer matrix method is developed by extended homogeneous capacity precision integration technology.The numerical results show that present method is accurate and effective. 展开更多
关键词 passive constrained layer damping rotational shell transfer matrix method first order differential matrix equation precise integration technology
原文传递
In situ converting the native passivation layer into a fast ion transport interphase to boost the stability of zinc anodes
2
作者 Zi-Long Xie Yunhai Zhu +5 位作者 Jia-Yi Du Dong-Yue Yang Hao Chen Zhi Wang Gang Huang Xin-Bo Zhang 《Green Energy & Environment》 2025年第7期1559-1567,共9页
Aqueous zinc batteries offer significant potential for large-scale energy storage,wearable devices,and medium-to low-speed transportation due to their safety,affordability,and environmental friendliness.However,the un... Aqueous zinc batteries offer significant potential for large-scale energy storage,wearable devices,and medium-to low-speed transportation due to their safety,affordability,and environmental friendliness.However,the uneven zinc deposition at the anode side caused by localized reaction activity from the passivation layer presents challenges that significantly impact the battery's stability and lifespan.In this study,we have proposed an expandable and maneuverable gel sustained-release(GSR)treatment to polish the Zn metal,which in situ converts its native passivation layer into a composite interphase layer with nanocrystal zinc phosphate and flexible polyvinyl alcohol.Such a thin and uniform interface contributes to fast and homogeneous Zn ion transport and improved anti-corrosion ability,enabling uniform zinc deposition without dendrite growth and thereby improving the battery performance with high-rate ability and long cycle life.This GSR treatment method,characterized by its simplicity,low cost,and universality,facilitates the widespread application of aqueous zinc batteries. 展开更多
关键词 Aqueous zinc batteries DENDRITE Passivation layer Interphase layer Gel sustained-release treatment
在线阅读 下载PDF
Surface characterization of chalcopyrite interacting with Leptospirillum ferriphilum 被引量:2
3
作者 顾帼华 胡可婷 李双棵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1898-1904,共7页
The alteration of surface properties of chalcopyrite after biological conditioning with Leptospirillum ferriphilum was studied by adsorption,zeta-potential,contact angle and bioleaching tests.The strains of L.ferriphi... The alteration of surface properties of chalcopyrite after biological conditioning with Leptospirillum ferriphilum was studied by adsorption,zeta-potential,contact angle and bioleaching tests.The strains of L.ferriphilum cultured using different energy sources(either soluble ferrous ion or chalcopyrite) were used.The adhesion of bacteria to the chalcopyrite surface was a fast process.Additionally,the adsorption of substrate-grown bacteria was greater and faster than that of liquid-grown ones.The isoelectric point(IEP) of chalcopyrite moved toward that of pure L.ferriphilum after conditioning with bacteria.The chalcopyrite contact angle curves motioned diversely in the culture with or without energy source.The results of X-ray diffraction patterns(XRD),scanning electron microscopy(SEM) and energy-dispersive X-ray spectroscopy(EDS) analysis indicate that the surface of chalcopyrite is covered with sulfur and jarosite during the bioleaching process by L.ferriphilum.Furthermore,EDS results imply that iron phase dissolves preferentially from chalcopyrite surface during bioleaching.The copper extraction is low,resulting from the formation of a passivation layer on the surface of chalcopyrite.The major component of the passivation layer that blocked continuous copper extraction is sulfur instead of jarosite. 展开更多
关键词 CHALCOPYRITE Leptospirillum ferriphilum surface properties passivation layer
在线阅读 下载PDF
Sulfur composition on surface of chalcopyrite during its bioleaching at 50°C 被引量:8
4
作者 吴世发 杨聪仁 +3 位作者 覃文庆 焦芬 王军 张雁生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4110-4118,共9页
The composition of passive layer of chalcopyrite was investigated by X-ray photoelectron spectroscopy(XPS), accompanied with cyclic voltammetry(CV). The leaching experiment shows that the extraction rates of Cu wi... The composition of passive layer of chalcopyrite was investigated by X-ray photoelectron spectroscopy(XPS), accompanied with cyclic voltammetry(CV). The leaching experiment shows that the extraction rates of Cu with leaching for 30 d by sterile control and microorganisms are 4.0% and 21.5%, respectively. In comparison, 3.8% and 10.5% Fe are leached by sterile control and microorganisms, respectively. The results of XPS studies suggest that Fe atoms dissolve preferentially from the chalcopyrite lattice, and disulfide(S22-), polysulfide(Sn2-) and elemental sulfur(S0) are identified on the chalcopyrite surfaces leached by sterile control and microorganisms. Additionally, sulfate(SO42-) is detected on the chalcopyrite surfaces leached by microorganisms, and most of it probably originates from jarosite. The analysis of CV results reveals that metal-deficient sulfide(Cu1-xFe1-yS2-z, yx) and elemental sulfur(S0) passivate the surface of chalcopyrite electrode. The elemental sulfur and/or jarosite coating on the chalcopyrite surface may have impact on the leaching process; however, the disulfide, polysulfide or metal-deficient sulfide plays a more key role in the chalcopyrite leaching. 展开更多
关键词 BIOLEACHING CHALCOPYRITE passive layer ELECTROCHEMISTRY
在线阅读 下载PDF
EIS Study on Pitting Corrosion of AA5083-H321 Aluminum-Magnesium Alloy in Stagnant 3.5% NaCl Solution 被引量:9
5
作者 K.Jafarzadeh T.Shahrabi M.G.Hosseini 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第2期215-219,共5页
In this research, EIS (electrochemical impedance spectroscopy) technique was utilized to study the pitting corrosion behaviour of AA5083-H321 aluminum-magnesium alloy in 3.5% NaCl solution. Impedance spectra were ob... In this research, EIS (electrochemical impedance spectroscopy) technique was utilized to study the pitting corrosion behaviour of AA5083-H321 aluminum-magnesium alloy in 3.5% NaCl solution. Impedance spectra were obtained during 240 h of exposure of the sample to the test solution. The surface and cross-section of the samples were studied by scanning electron microscopy (SEM) and EDAX (energy dispersive analysis of X-ray) analysis. The results indicated that as the resistance of the passive layer on intermetallic particles is very small, this parameter on the sample surface layers is controlled by that of pure passive layer. However, the capacitors in the proposed equivalent circuit are replaced with the constant phase elements (CPE), due to non-uniformity and occurrence of pitting corrosion on the surface. The outward diffusion of Al^+3 ions through the passive layer and the thickening of this layer cause the impedance decrease in the first 24 h and increase afterwards. The detachment of intermetallic particles from some of pits and the accumulation of the corrosion products inside some others are factors that prevents the continuation of cathodic reactions on the top of the intermetallic particles. 展开更多
关键词 Corrosion AA5083-H321 aluminum-magnesium alloy IMPEDANCE PITTING Intermetallic particle passive layer
在线阅读 下载PDF
Interfacial reactions of chalcopyrite in ammonia–ammonium chloride solution 被引量:9
6
作者 Xiao-ming HUA Yong-fei ZHENG +5 位作者 Qian XU Xiong-gang LU Hong-wei CHENG Xing-li ZOU Qiu-shi SONG Zhi-qiang NING 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第3期556-566,共11页
The interfacial reactions of chalcopyrite in ammonia–ammonium chloride solution were investigated.The chalcopyrite surface was examined by scanning electron microscopy and X-ray photoelectron spectroscopy(XPS)techniq... The interfacial reactions of chalcopyrite in ammonia–ammonium chloride solution were investigated.The chalcopyrite surface was examined by scanning electron microscopy and X-ray photoelectron spectroscopy(XPS)techniques.It was found that interfacial passivation layers of chalcopyrite were formed from an iron oxide layer on top of a copper sulfide layer overlaying the bulk chalcopyrite,whereas CuFe1-xS2 or copper sulfides were formed via the preferential dissolution of Fe.The copper sulfide layer formed a new passivation layer,whereas the iron oxide layer peeled off spontaneously and partially from the chalcopyrite surface.The state of the copper sulfide layer was discussed after being deduced from the appearance of S2-,S22-,Sn2-,S0 and SO42-.A mechanism for the oxidation and passivation of chalcopyrite under different pH values and redox potentials was proposed.Accordingly,a model of the interfacial reaction on the chalcopyrite surface was constructed using a three-step reaction pathway,which demonstrated the formation and transformation of passivation layers under the present experimental conditions. 展开更多
关键词 CHALCOPYRITE interfacial reaction AMMONIA passivation layer oxidation mechanisms
在线阅读 下载PDF
Recent advances based on Mg anodes and their interfacial modulation in Mg batteries 被引量:6
7
作者 Fanfan Liu Guoqin Cao +6 位作者 Jinjin Ban Honghong Lei Yan Zhang Guosheng Shao Aiguo Zhou Li zhen Fan Junhua Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第10期2699-2716,共18页
Magnesium(Mg)batteries(MBs),as post-lithium-ion batteries,have received great attention in recent years due to their advantages of high energy density,low cost,and safety insurance.However,the formation of passivation... Magnesium(Mg)batteries(MBs),as post-lithium-ion batteries,have received great attention in recent years due to their advantages of high energy density,low cost,and safety insurance.However,the formation of passivation layers on the surface of Mg metal anode and the poor compatibility between Mg metal and conventional electrolytes during charge-discharge cycles seriously affect the performance of MBs.The great possibility of generating Mg dendrites has also caused controversy among researchers.Moreover,the regulation of Mg deposition and the enhancement of battery cycle stability is largely limited by interfacial stability between Mg metal anode and electrolyte.In this review,recent advances in interfacial science and engineering of MBs are summarized and discussed.Special attention is given to interfacial chemistry including passivation layer formation,incompatibilities,ion transport,and dendrite growth.Strategies for building stable electrode/interfaces,such as anode designing and electrolyte modification,construction of artificial solid electrolyte interphase(SEI)layers,and development of solid-state electrolytes to improve interfacial contacts and inhibit Mg dendrite and passivation layer formation,are reviewed.Innovative approaches,representative examples,and challenges in developing high-performance anodes are described in detail.Based on the review of these strategies,reference is provided for future research to improve the performance of MBs,especially in terms of interface and anode design. 展开更多
关键词 Magnesium anode DENDRITE Passivation layers Interfacial engineering Solid electrolyte interphase
在线阅读 下载PDF
Robust ZnS interphase for stable Zn metal anode of high-performance aqueous secondary batteries 被引量:5
8
作者 Lingyun Xiong Hao Fu +4 位作者 Weiwei Han Manxiang Wang Jingwei Li Woochul Yang Guicheng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期1053-1060,共8页
Although Zn metal is an ideal anode candidate for aqueous batteries owing to its high theoretical capacity,lower cost,and safety,its service life and efficiency are damaged by severe hydrogen evolution reaction,self-c... Although Zn metal is an ideal anode candidate for aqueous batteries owing to its high theoretical capacity,lower cost,and safety,its service life and efficiency are damaged by severe hydrogen evolution reaction,self-corrosion,and dendrite growth.Herein,a thickness-controlled ZnS passivation layer was fabricated on the Zn metal surface to obtain Zn@ZnS electrode through oxidation–orientation sulfuration by the liquid-and vapor-phase hydrothermal processes.Benefiting from the chemical inertness of the ZnS interphase,the as-prepared Zn@ZnS electrode presents an excellent anti-corrosion and undesirable hydrogen evolution reaction.Meanwhile,the thickness-optimized ZnS layer with an unbalanced charge distribution represses dendrite growth by guiding Zn plating/stripping,leading to long service life.Consequently,the Zn@Zn S presented 300 cycles in the symmetric cells with a 42 mV overpotential,200 cycles in half cells with a 78 mV overpotential,and superb rate performance in Zn||NH;V;O;full cells. 展开更多
关键词 Zn metal anode dendrite-free ZnS passivation layer controllable thickness chemical inertness unbalanced charge distribution
在线阅读 下载PDF
Constructing Al@C-Sn pellet anode without passivation layer for lithium-ion battery 被引量:3
9
作者 Kangzhe Cao Sitian Wang +3 位作者 Yanan He Jiahui Ma Ziwei Yue Huiqiao Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期552-561,共10页
Al is considered as a promising lithium-ion battery(LIBs)anode materials owing to its high theoretical capacity and appropri-ate lithation/de-lithation potential.Unfortunately,its inevitable volume expansion causes th... Al is considered as a promising lithium-ion battery(LIBs)anode materials owing to its high theoretical capacity and appropri-ate lithation/de-lithation potential.Unfortunately,its inevitable volume expansion causes the electrode structure instability,leading to poor cyclic stability.What’s worse,the natural Al2O3 layer on commercial Al pellets is always existed as a robust insulating barrier for elec-trons,which brings the voltage dip and results in low reversible capacity.Herein,this work synthesized core-shell Al@C-Sn pellets for LIBs by a plus-minus strategy.In this proposal,the natural Al2O3 passivation layer is eliminated when annealing the pre-introduced SnCl2,meanwhile,polydopamine-derived carbon is introduced as dual functional shell to liberate the fresh Al core from re-oxidization and alle-viate the volume swellings.Benefiting from the addition of C-Sn shell and the elimination of the Al2O3 passivation layer,the as-prepared Al@C-Sn pellet electrode exhibits little voltage dip and delivers a reversible capacity of 1018.7 mAh·g^(-1) at 0.1 A·g^(-1) and 295.0 mAh·g^(-1) at 2.0 A·g^(-1)(after 1000 cycles),respectively.Moreover,its diffusion-controlled capacity is muchly improved compared to those of its counterparts,confirming the well-designed nanostructure contributes to the rapid Li-ion diffusion and further enhances the lithium storage activity. 展开更多
关键词 lithium-ion battery high-performance anode aluminum passivation layer plus-minus strategy
在线阅读 下载PDF
Significantly improved high k dielectric performance:Rare earth oxide as a passivation layer laminated with TiO_(2) film 被引量:2
10
作者 Shuan Li Weipeng Wang +2 位作者 Youyu Lin Linlin Wang Xingguo Li 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第9期1376-1384,I0004,共10页
In order to achieve a super gate dielectric performance,rare earth oxides featuring for large band gap,good thermodynamic stability and relatively high k value were selected to be laminated with TiO_(2)film to prepare... In order to achieve a super gate dielectric performance,rare earth oxides featuring for large band gap,good thermodynamic stability and relatively high k value were selected to be laminated with TiO_(2)film to prepare bilayer dielectric films.As an example,the microstructure,morphology,band gap structure and electrical performance of TiO_(2)-Y_(2)O_(3)bilayer films were systematically investigated.Results show that stacking sequence of TiO_(2)and Y_(2)O_(3)sublayers has a significant impact on the dielectric performance and Y_(2)O_(3)film as a passivation layer can effectively improve electrical properties.Besides,the electrical behaviors analysis of TiO_(2)-Y_(2)O_(3),Y_(2)O_(3)-TiO_(2),Y_(2)O_(3)and TiO_(2)samples was carried out by impedance spectra and equivale nt circuit.The result shows that TiO_(2)-Y_(2)O_(3)/Si sample holds the largest internal re sistance of 74665Ωamong four samples.Moreover,the most outstanding properties of Pt/TiO_(2)-Y_(2)O_(3)/Si capacitor are achieved by varying the thickness of sublayers and annealing temperature.500℃-annealed bilayer film with 17 nm-TiO_(2)and 3-nm Y_(2)O_(3)displays a k value of 28.24,which is more than 1.4 times that of current commercial HfO_(2).Further,Schottky emission was determined to be leakage current transport mechanism for TiO_(2)-Y_(2)O_(3)bilayer films.Inspired by this result,the electrical performance of more general Pt/TiO_(2)-REOs/Si MOS capacitors(RE=Sc,La,Ce,Gd and Pr)was measured.The combination of TiO_(2)film and REOs passivation layer with the satisfying performance provides promising candidates for future Si-based integrated circuit(IC). 展开更多
关键词 Rare earth oxides Gate dielectric Thin film SPUTTERING Passivation layer
原文传递
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries 被引量:2
11
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 Solid-state lithium batteries Composite solid electrolyte In-situ polymerization Interfacial passivation layer Self-adaptability
在线阅读 下载PDF
Low-Temperature Aging Provides 22% E cient Bromine-Free and Passivation Layer-Free Planar Perovskite Solar Cells 被引量:2
12
作者 Xin Wang Luyao Wang +6 位作者 Tong Shan Shibing Leng Hongliang Zhong Qinye Bao Zheng-Hong Lu Lin-Long Deng Chun-Chao Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第7期29-42,共14页
Previous reports of formamidinium/methylamine(FAMA)-mixed halide perovskite solar cells have focused mainly on controlling the morphology of the perovskite film and its interface—for example,through the inclusion of ... Previous reports of formamidinium/methylamine(FAMA)-mixed halide perovskite solar cells have focused mainly on controlling the morphology of the perovskite film and its interface—for example,through the inclusion of bromine and surface passivation.In this paper,we describe a new processing pathway for the growth of a high-quality bromine-free FAMAPbI3 halide perovskites via the control of intermediate phase.Through low-temperature aging growth(LTAG)of a freshly deposited perovskite film,α-phase perovskites can be seeded in the intermediate phase and,at the same time,prevent beta-phase perovskite to nucleate.After postannealing,large grain-size perovskites with significantly reduced PbI2 presence on the surface can be obtained,thereby eliminating the need of additional surface passivation step.Our pristine LTAG-treated solar cells could provide PCEs of greater than 22%without elaborate use of bromine or an additional passivation layer.More importantly,when using this LTAG process,the growth of the pure alpha-phase FAMAPbI3 was highly reproducible. 展开更多
关键词 Aging growth Bromine-free Passivation layer Lead iodide Perovskite solar cells
在线阅读 下载PDF
Spontaneous local redox reaction to passivate CNTs as lightweight current collector for high energy density lithium ion batteries 被引量:2
13
作者 Chao Lv Zhen Tong +4 位作者 Shi-Yuan Zhou Si-Yu Pan Hong-Gang Liao Yao Zhou Jun-Tao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期553-561,I0013,共10页
Extensive usage of highly conductive carbon materials with large specific surface area(e.g.,carbon nanotubes,CNTs)in lithium ion batteries(LIBs),especially as current collector of anodes,suffers from low initial coulo... Extensive usage of highly conductive carbon materials with large specific surface area(e.g.,carbon nanotubes,CNTs)in lithium ion batteries(LIBs),especially as current collector of anodes,suffers from low initial coulombic efficiency(ICE),large interfacial resistance,and severe embrittlement,as the large specific surface area often results in severe interfacial decomposition of the electrolyte and the formation of thick and fluffy solid electrolyte interphase(SEI)during cycling of LIBs.Herein,we demonstrate that when the CNT-based current collector and Na foil(which are being stacked intimately upon each other)are being placed in Na+-based organic electrolyte,local redox reaction between the Na foil and the electrolyte would occur spontaneously,generating a thin and homogeneous NaF-based passivating layer on the CNTs.More importantly,we found that owing to the weak solvation behaviors of Na+in the organic electrolyte,the resulting passivation layer,which is rich in NaF,is thin and dense;when used as the anode current collector in LIBs,the pre-existing passivating layer can function effectively in isolating the anode from the solvated Li+,thus suppressing the formation of bulky SEI and the destructive intercalation of solvated Li+.The relevant half-cell(graphite as anode)exhibits a high ICE of 92.1%;the relevant pouch cell with thus passivated CNT film as current collectors for both electrodes(LiCoO_(2)as cathode,graphite as anode)displays a high energy density of 255 Wh kg^(-1),spelling an increase of 50%compared with that using the conventional metal current collectors. 展开更多
关键词 Lightweight current collector Passivating layer Initial coulombic efficiency High energy density storage
在线阅读 下载PDF
The effect of Laves phases and nano-precipitates on the electrochemical corrosion resistance of Mg-Al-Ca alloys under alkaline conditions 被引量:1
14
作者 Markus Felten Veronika Chaineux +12 位作者 Siyuan Zhang Ali Tehranchi Tilmann Hickel Christina Scheu Joshua Spille Marta Lipińska-Chwałek Joachim Mayer Benjamin Berkels Marcus Hans Imke Greving Silja Flenner Sandra Sefa Daniela Zander 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2447-2461,共15页
The electrochemical corrosion mechanisms of Mg alloys were extensively studied in previous investigations of different chemical com-positions,modified surface states and various electrolyte conditions.However,recent r... The electrochemical corrosion mechanisms of Mg alloys were extensively studied in previous investigations of different chemical com-positions,modified surface states and various electrolyte conditions.However,recent research focused on the active state of Mg dissolution,leading to unresolved effects of secondary phases adjacent to a stableα-solid solution passive layer.The present study investigates the fundamental electrochemical corrosion mechanisms of three different Laves phases with varying phase morphologies and phase fractions in the passive state of Mg-Al-Ca alloys.The microstructure was characterized by(transmission-)electron microscopy and synchrotron-based transmission X-ray microscopy.The electrochemical corrosion resistance was determined with a standard three-electrode setup and advanced in-situ flow cell measurements.A new electrochemical activity sequence(C15>C36>α-Mg>C14)was obtained,as a result of a stable passive layer formation on theα-solid solution.Furthermore,nm-scale Mg-rich precipitates were identified within the Laves phases,which tend to inhibit the corrosion kinetics. 展开更多
关键词 Laves phase STEM MAGNESIUM Corrosion passive layer
在线阅读 下载PDF
Stable sodium anodes for sodium metal batteries(SMBs) enabled by in-situ formed quasi solid-state polymer electrolyte 被引量:1
15
作者 Jian Ma Xuyong Feng +7 位作者 Yueyue Wu Yueda Wang Pengcheng Liu Ke Shang Hao Jiang Xianglong Hou David Mitlin Hongfa Xiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期290-299,I0008,共11页
A high-performance quasi-solid polymer electrolyte for sodium metal batteries(SMBs)based on in-situ polymerized poly(1,3-dioxolane)(DOL)with 20%volume ratio of fluoroethylene carbonate(FEC),termed"PDFE-20",i... A high-performance quasi-solid polymer electrolyte for sodium metal batteries(SMBs)based on in-situ polymerized poly(1,3-dioxolane)(DOL)with 20%volume ratio of fluoroethylene carbonate(FEC),termed"PDFE-20",is proposed in this work.It is demonstrated PDFE-20 possesses a room-temperature ionic conductivity of 3.31×10^(-3) S cm^(-1),an ionic diffusion activation energy of 0.10 eV,and an oxidation potential of 4.4 V.SMBs based on PDFE-20 and Na_(3)V_(2)(PO_(4))_(3)(NVP)cathodes were evaluated with an active material mass loading of 6.8 mg cm^(-2).The cell displayed an initial discharge specific capacity of 104 mA h g^(-1),and97.1%capacity retention after 100 cycles at 0.5 C.In-situ polymerization conformally coats the anode/-cathode interfaces,avoiding geometrical gaps and high charge transfer resistance with ex-situ polymerization of the same chemistry.FEC acts as a plasticizer during polymerization to suppress crystallization and significantly improves ionic transport.During battery cycling FEC promotes mechanical congruence of electrolyte-electrode interfaces while forming a stable NaF-rich solid electrolyte interphase(SEI)at the anode.Density functional theory(DFT)calculations were also performed to further understand the role FEC in the poly(DOL)-FEC electrolytes.This work broadens the application of in-situ prepared poly(DOL)electrolytes to sodium storage and demonstrates the crucial role of FEC in improving the electrochemical performance. 展开更多
关键词 Quasi-solid batteries(QSBs) Quasi-solid electrolytes(QSEs) NaF-rich passivating layer Interfacial stability Sodium metal batteries(SMBs)
在线阅读 下载PDF
A high mobility C_(60) field-effect transistor with an ultrathin pentacene passivation layer and bathophenanthroline/metal bilayer electrodes 被引量:1
16
作者 Zhou Jian-Lin Yu Jun-Sheng +1 位作者 Yu Xin-Ge Cai Xin-Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期498-503,共6页
C60 field-effect transistor (OFET) with a mobility as high as 5.17 cm2/V.s is fabricated. In our experiment, an ultrathin pentacene passivation layer on poly-(methyl methacrylate) (PMMA) insulator and a bathophe... C60 field-effect transistor (OFET) with a mobility as high as 5.17 cm2/V.s is fabricated. In our experiment, an ultrathin pentacene passivation layer on poly-(methyl methacrylate) (PMMA) insulator and a bathophenanthroline (Bphen)/Ag bilayer electrode are prepared. The OFET shows a significant enhancement of electron mobility compared with the corresponding device with a single PMMA insultor and an Ag electrode. By analysing the C60 film with atomic force microscopy and X-ray diffraction techniques, it is shown that the pentacene passivation layer can contribute to C60 film growth with the large grain size and significantly improve crystallinity. Moreover, the Bphen buffer layer can reduce the electron contact barrier from Ag electrodes to C60 film efficiently. 展开更多
关键词 organic field-effect transistors C60 Bphen passivation layer
原文传递
Improvement of Ge MOS Electrical and Interfacial Characteristics by using NdAlON as Interfacial Passivation Layer 被引量:1
17
作者 LI Chunxia ZHANG Weifeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第4期533-537,共5页
The Ge metal-oxide-semiconductor (MOS) capacitors were fabricated with HfO2 as gate dielectric.AlON,NdON,and NdAlON were deposited between the gate dielectric and the Ge substrate as the interfacial passivation layer ... The Ge metal-oxide-semiconductor (MOS) capacitors were fabricated with HfO2 as gate dielectric.AlON,NdON,and NdAlON were deposited between the gate dielectric and the Ge substrate as the interfacial passivation layer (IPL).The electrical properties (such as capacitance-voltage (C-V) and gate leakage current density versus gate voltage (J_(g)-V_(g))) were measured by HP4284A precision LCR meter and HP4156A semiconductor parameter analyzer.The chemical states and interfacial quality of the high-k/Ge interface were investigated by X-ray photoelectron spectroscopy (XPS).The experimental results show that the sample with the NdAlON as IPL exhibits the excellent interfacial and electrical properties.These should be attributed to an effective suppression of the Ge suboxide and HfGeOx interlayer,and an enhanced blocking role against inter-diffusion of the elements during annealing by the NdAlON IPL. 展开更多
关键词 Ge MOS capacitor interfacial passivation layer(IPL) gate stacked dielectric interface properties
原文传递
A Survey of Security Issues in Cognitive Radio Networks 被引量:9
18
作者 LI Jianwu FENG Zebing +1 位作者 FENG Zhiyong ZHANG Ping 《China Communications》 SCIE CSCD 2015年第3期132-150,共19页
In the last decade,cognitive radio(CR) has emerged as a major next generation wireless networking technology,which is the most promising candidate solution to solve the spectrum scarcity and improve the spectrum utili... In the last decade,cognitive radio(CR) has emerged as a major next generation wireless networking technology,which is the most promising candidate solution to solve the spectrum scarcity and improve the spectrum utilization.However,there exist enormous challenges for the open and random access environment of CRNs,where the unlicensed secondary users(SUs) can use the channels that are not currently used by the licensed primary users(PUs) via spectrum-sensing technology.Because of this access method,some malicious users may access the cognitive network arbitrarily and launch some special attacks,such as primary user emulation attack,falsifying data or denial of service attack,which will cause serious damage to the cognitive radio network.In addition to the specifi c security threats of cognitive network,CRNs also face up to the conventional security threats,such as eavesdropping,tampering,imitation,forgery,and noncooperation etc..Hence,Cognitive radio networks have much more risks than traditional wireless networks with its special network model.In this paper,we considered the security threats from passive and active attacks.Firstly,the PHY layer security is presented in the view of passive attacks,and it is a compelling idea of using the physical properties of the radio channel to help provide secure wireless communications.Moreover,malicious user detection is introduced in the view of active attacks by means of the signal detection techniques to decrease the interference and the probabilities of false alarm and missed detection.Finally,we discuss the general countermeasures of security threats in three phases.In particular,we discuss the far reaching effect of defensive strategy against attacks in CRNs. 展开更多
关键词 CRNs security physical layer security security capacity active attacks passive attacks
在线阅读 下载PDF
Influence of annealing temperature on passivation performance of thermal atomic layer deposition Al_2O_3 films 被引量:2
19
作者 张祥 刘邦武 +2 位作者 赵彦 李超波 夏洋 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期426-430,共5页
Chemical and field-effect passivation of atomic layer deposition (ALD) Al2O3 films are investigated, mainly by corona charging measurement. The interface structure and material properties are characterized by transm... Chemical and field-effect passivation of atomic layer deposition (ALD) Al2O3 films are investigated, mainly by corona charging measurement. The interface structure and material properties are characterized by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), respectively. Passivation performance is improved remarkably by annealing at temperatures of 450 ℃ and 500 ℃, while the improvement is quite weak at 600 ℃, which can be attributed to the poor quality of chemical passivation. An increase of fixed negative charge density in the films during annealing can be explained by the Al2O3/Si interface structural change. The Al–OH groups play an important role in chemical passivation, and the Al–OH concentration in an as-deposited film subsequently determines the passivation quality of that film when it is annealed, to a certain degree. 展开更多
关键词 annealing atomic layer deposition Al2O3 passivation performance
原文传递
Crystalline silicon surface passivation investigated by thermal atomic-layer-deposited aluminum oxide 被引量:1
20
作者 侯彩霞 郑新和 +6 位作者 贾锐 陶科 刘三姐 姜帅 张鹏飞 孙恒超 李永涛 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期478-482,共5页
Atomic-layer-deposited(ALD) aluminum oxide(Al2O3) has demonstrated an excellent surface passivation for crystalline silicon(c-Si) surfaces, as well as for highly boron-doped c-Si surfaces. In this paper, water-b... Atomic-layer-deposited(ALD) aluminum oxide(Al2O3) has demonstrated an excellent surface passivation for crystalline silicon(c-Si) surfaces, as well as for highly boron-doped c-Si surfaces. In this paper, water-based thermal atomic layer deposition of Al2O3 films are fabricated for c-Si surface passivation. The influence of deposition conditions on the passivation quality is investigated. The results show that the excellent passivation on n-type c-Si can be achieved at a low thermal budget of 250℃ given a gas pressure of 0.15 Torr. The thickness-dependence of surface passivation indicates that the effective minority carrier lifetime increases drastically when the thickness of Al2O3 is larger than 10 nm. The influence of thermal post annealing treatments is also studied. Comparable carrier lifetime is achieved when Al2O3 sample is annealed for 15 min in forming gas in a temperature range from 400℃ to 450℃. In addition, the passivation quality can be further improved when a thin PECVD-SiNx cap layer is prepared on Al2O3, and an effective minority carrier lifetime of2.8 ms and implied Voc of 721 mV are obtained. In addition, several novel methods are proposed to restrain blistering. 展开更多
关键词 atomic layer deposition Al_2O_3 surface passivation effective minority carrier lifetime
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部