Purpose: The purpose of this study was to evaluate the effect of using a passive exoskeleton on lumbar muscle activity during lifting movements, and to determine whether muscle activity remains altered after exoskelet...Purpose: The purpose of this study was to evaluate the effect of using a passive exoskeleton on lumbar muscle activity during lifting movements, and to determine whether muscle activity remains altered after exoskeleton removal. This study sought to identify the potential risks and benefits associated with the use of passive exoskeletons for the prevention and treatment of low back pain. Methods: Eighteen healthy adult participants lifted a 10 kg suitcase while wearing a passive exoskeleton. Muscle activity and postures were measured during lifting and before, during, and after exoskeleton use. This study examined whether the reduced muscle activity observed during exoskeleton use persisted after exoskeleton removal. Muscle activity was assessed using electromyography and postures were recorded using reflective markers and a camera. Results: The study found that Lumbar muscle activity decreased significantly (approximately 40%) during exoskeleton use compared to that without exoskeleton use. Importantly, lumbar muscle activity remained low after exoskeleton removal, at levels similar to those observed during exoskeleton use. This suggests that individuals adapted to the exoskeleton support and maintained altered muscle control, even without the exoskeleton. Conclusion: This study demonstrates that passive exoskeletons significantly reduce lumbar muscle activity during lifting tasks, and that this altered muscle control persists after exoskeleton removal. These findings contribute to the understanding of the risks and benefits of passive exoskeletons, potentially aiding their development and informing their use in the prevention and treatment of low back pain.展开更多
Musculoskeletal Symptoms(MSS)often arise from prolonged maintenance of bent postures in the neck and trunk during surgical procedures.To prevent MSS,a passive exoskeleton utilizing carbon fiber beams to offer support ...Musculoskeletal Symptoms(MSS)often arise from prolonged maintenance of bent postures in the neck and trunk during surgical procedures.To prevent MSS,a passive exoskeleton utilizing carbon fiber beams to offer support to the neck and trunk was proposed.The application of support force is intended to reduce muscle forces and joint compression forces.A nonlinear mathematical model for the neck and trunk support beam is presented to estimate the support force.A validation test is subsequently conducted to assess the accuracy of the mathematical model.Finally,a preliminary functional evaluation test is performed to evaluate movement capabilities and support provided by the exoskeleton.The mathematical model demonstrates an accuracy for beam support force within a range of 0.8–1.2 N Root Mean Square Error(RMSE).The exoskeleton was shown to allow sufficient Range of Motion(ROM)for neck and trunk during open surgery training.While the exoskeleton showed potential in reducing musculoskeletal load and task difficulty during simulated surgery tasks,the observed reduction in perceived task difficulty was deemed non-significant.This prompts the recommendation for further optimization in personalized adjustments of beams to facilitate improvements in task difficulty and enhance comfort.展开更多
Modern conflicts demand substantial physical and psychological exertion,often resulting in fatigue and diminished combat or operational readiness.Several exoskeletons have been developed recently to address these chal...Modern conflicts demand substantial physical and psychological exertion,often resulting in fatigue and diminished combat or operational readiness.Several exoskeletons have been developed recently to address these challenges,presenting various limitations that affect their operational or everyday usability.This article evaluates the performance of a dual-purpose passive ankle exoskeleton developed for the reduction of metabolic costs during walking,seeking to identify a force element that could be applied to the target population.Based on the 6-min walk test,twenty-nine subjects participated in the study using three different force elements.The results indicate that it is possible to reduce metabolic expenditure while using the developed exoskeleton.Additionally,the comfort and range of motion results verify the exoskeleton's suitability for use in uneven terrain and during extended periods.Nevertheless,the choice of the force element should be tailored to each user,and the control system should be adjustable to optimise the exoskeleton's performance.展开更多
To develop sophisticated and efficient control strategies for exoskeleton devices,acquiring the information of interaction forces between the wearer and the wearable device is essential.However,obtaining the interacti...To develop sophisticated and efficient control strategies for exoskeleton devices,acquiring the information of interaction forces between the wearer and the wearable device is essential.However,obtaining the interaction force via conventional methods,such as direct measurement using force sensors,is problematic.This paper proposes a kinematic data-based estimation method to evaluate the interaction force between human lower limbs and passive exoskeleton links during level ground walking.Unlike conventional methods,the proposed method requires no force sensors and is computationally cheaper to obtain the calculation results.To obtain more accurate kinematic data,a marker refinement algorithm based on bilevel optimization framework is adopted.The interaction force is evaluated by a spring model,which is used to imitate the binding behavior between human limbs and the exoskeleton links.The deflection of the spring model is calculated based on the assumption that the phase delay between human limb and exoskeleton link can be presented by the sequence of frames of kinematic data.Experimental results of six subjects indicate that our proposed method can estimate the interaction forces during level ground walking.Moreover,a case study of bandage location optimization is conducted to demonstrate the usefulness of obtaining the interaction information.展开更多
文摘Purpose: The purpose of this study was to evaluate the effect of using a passive exoskeleton on lumbar muscle activity during lifting movements, and to determine whether muscle activity remains altered after exoskeleton removal. This study sought to identify the potential risks and benefits associated with the use of passive exoskeletons for the prevention and treatment of low back pain. Methods: Eighteen healthy adult participants lifted a 10 kg suitcase while wearing a passive exoskeleton. Muscle activity and postures were measured during lifting and before, during, and after exoskeleton use. This study examined whether the reduced muscle activity observed during exoskeleton use persisted after exoskeleton removal. Muscle activity was assessed using electromyography and postures were recorded using reflective markers and a camera. Results: The study found that Lumbar muscle activity decreased significantly (approximately 40%) during exoskeleton use compared to that without exoskeleton use. Importantly, lumbar muscle activity remained low after exoskeleton removal, at levels similar to those observed during exoskeleton use. This suggests that individuals adapted to the exoskeleton support and maintained altered muscle control, even without the exoskeleton. Conclusion: This study demonstrates that passive exoskeletons significantly reduce lumbar muscle activity during lifting tasks, and that this altered muscle control persists after exoskeleton removal. These findings contribute to the understanding of the risks and benefits of passive exoskeletons, potentially aiding their development and informing their use in the prevention and treatment of low back pain.
基金funded by China Scholarship Council,Grant Number 201906840121department of rehabilitation medicine,University Medical Center Groningen,University of Groningen,grant number:O/085350.
文摘Musculoskeletal Symptoms(MSS)often arise from prolonged maintenance of bent postures in the neck and trunk during surgical procedures.To prevent MSS,a passive exoskeleton utilizing carbon fiber beams to offer support to the neck and trunk was proposed.The application of support force is intended to reduce muscle forces and joint compression forces.A nonlinear mathematical model for the neck and trunk support beam is presented to estimate the support force.A validation test is subsequently conducted to assess the accuracy of the mathematical model.Finally,a preliminary functional evaluation test is performed to evaluate movement capabilities and support provided by the exoskeleton.The mathematical model demonstrates an accuracy for beam support force within a range of 0.8–1.2 N Root Mean Square Error(RMSE).The exoskeleton was shown to allow sufficient Range of Motion(ROM)for neck and trunk during open surgery training.While the exoskeleton showed potential in reducing musculoskeletal load and task difficulty during simulated surgery tasks,the observed reduction in perceived task difficulty was deemed non-significant.This prompts the recommendation for further optimization in personalized adjustments of beams to facilitate improvements in task difficulty and enhance comfort.
基金the Portuguese Army,through CINAMIL,within project ELITE2-Enhancement LITe ExoskeletonFoundation for Science and Technology (FCT),through IDMEC,under LAETA,project UIDB/50022/2020 for supporting this research。
文摘Modern conflicts demand substantial physical and psychological exertion,often resulting in fatigue and diminished combat or operational readiness.Several exoskeletons have been developed recently to address these challenges,presenting various limitations that affect their operational or everyday usability.This article evaluates the performance of a dual-purpose passive ankle exoskeleton developed for the reduction of metabolic costs during walking,seeking to identify a force element that could be applied to the target population.Based on the 6-min walk test,twenty-nine subjects participated in the study using three different force elements.The results indicate that it is possible to reduce metabolic expenditure while using the developed exoskeleton.Additionally,the comfort and range of motion results verify the exoskeleton's suitability for use in uneven terrain and during extended periods.Nevertheless,the choice of the force element should be tailored to each user,and the control system should be adjustable to optimise the exoskeleton's performance.
基金This work was supported in part by the National Natural Science Foundation of China under grant nos.61603284 and 61903286.
文摘To develop sophisticated and efficient control strategies for exoskeleton devices,acquiring the information of interaction forces between the wearer and the wearable device is essential.However,obtaining the interaction force via conventional methods,such as direct measurement using force sensors,is problematic.This paper proposes a kinematic data-based estimation method to evaluate the interaction force between human lower limbs and passive exoskeleton links during level ground walking.Unlike conventional methods,the proposed method requires no force sensors and is computationally cheaper to obtain the calculation results.To obtain more accurate kinematic data,a marker refinement algorithm based on bilevel optimization framework is adopted.The interaction force is evaluated by a spring model,which is used to imitate the binding behavior between human limbs and the exoskeleton links.The deflection of the spring model is calculated based on the assumption that the phase delay between human limb and exoskeleton link can be presented by the sequence of frames of kinematic data.Experimental results of six subjects indicate that our proposed method can estimate the interaction forces during level ground walking.Moreover,a case study of bandage location optimization is conducted to demonstrate the usefulness of obtaining the interaction information.