期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dual Self-attention Fusion Message Neural Network for Virtual Screening in Drug Discovery by Molecular Property Prediction
1
作者 Jingjing Wang Kangming Hou +2 位作者 Hao Chen Jing Fang Hongzhen Li 《Journal of Bionic Engineering》 2025年第1期354-369,共16页
The development of deep learning has made non-biochemical methods for molecular property prediction screening a reality,which can increase the experimental speed and reduce the experimental cost of relevant experiment... The development of deep learning has made non-biochemical methods for molecular property prediction screening a reality,which can increase the experimental speed and reduce the experimental cost of relevant experiments.There are currently two main approaches to representing molecules:(a)representing molecules by fixing molecular descriptors,and(b)representing molecules by graph convolutional neural networks.Currently,both of these Representative methods have achieved some results in their respective experiments.Based on past efforts,we propose a Dual Self-attention Fusion Message Neural Network(DSFMNN).DSFMNN uses a combination of dual self-attention mechanism and graph convolutional neural network.Advantages of DSFMNN:(1)The dual self-attention mechanism focuses not only on the relationship between individual subunits in a molecule but also on the relationship between the atoms and chemical bonds contained in each subunit.(2)On the directed molecular graph,a message delivery approach centered on directed molecular bonds is used.We test the performance of the model on eight publicly available datasets and compare the performance with several models.Based on the current experimental results,DSFMNN has superior performance compared to previous models on the datasets applied in this paper. 展开更多
关键词 Directed message passing network Deep learning Molecular property prediction Self-attention mechanism
暂未订购
Sparse graph neural network aided efficient decoder for polar codes under bursty interference
2
作者 Shengyu Zhang Zhongxiu Feng +2 位作者 Zhe Peng Lixia Xiao Tao Jiang 《Digital Communications and Networks》 2025年第2期359-364,共6页
In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the e... In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding.To further improve the decoding performance,a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network.This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks.Finally,predictions are generated by feeding the embedding vectors into a readout module.Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality. 展开更多
关键词 Sparse graph neural network Polar codes Bursty interference Sparse factor graph Message passing neural network
在线阅读 下载PDF
State-Incomplete Intelligent Dynamic Multipath Routing Algorithm in LEO Satellite Networks
3
作者 Peng Liang Wang Xiaoxiang 《China Communications》 2025年第2期1-11,共11页
The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has bec... The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has become an essential supplement to the terrestrial network.However,the dynamic changes and uneven distribution of satellite network traffic inevitably bring challenges to multipath routing.Even worse,the harsh space environment often leads to incomplete collection of network state data for routing decision-making,which further complicates this challenge.To address this problem,this paper proposes a state-incomplete intelligent dynamic multipath routing algorithm(SIDMRA)to maximize network efficiency even with incomplete state data as input.Specifically,we model the multipath routing problem as a markov decision process(MDP)and then combine the deep deterministic policy gradient(DDPG)and the K shortest paths(KSP)algorithm to solve the optimal multipath routing policy.We use the temporal correlation of the satellite network state to fit the incomplete state data and then use the message passing neuron network(MPNN)for data enhancement.Simulation results show that the proposed algorithm outperforms baseline algorithms regarding average end-to-end delay and packet loss rate and performs stably under certain missing rates of state data. 展开更多
关键词 deep deterministic policy gradient LEO satellite network message passing neuron network multipath routing
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部