To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells...To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells were selected to carry out the running test of sand control string with pre-packed screen.Meanwhile,the running simulation was performed by using the Landmark software.The results show that the sand control packer and screen can be run smoothly in the wellbore with a dogleg angle of more than 20°/30 m and keep the structure stable.Additionally,the comprehensive friction coefficient is 0.4,under which and the simulation shows that the sand control string for hydrate exploitation can be run smoothly.These findings have important guiding significance for running the completion sand control string in natural gas hydrate exploitation.展开更多
To effectively improve the adaptability and traversal abilities of a multi-terrain mobile robot under the dynamic excitation of multiple roads,we explore the mobile robot’s vibration and joint driving output stall ca...To effectively improve the adaptability and traversal abilities of a multi-terrain mobile robot under the dynamic excitation of multiple roads,we explore the mobile robot’s vibration and joint driving output stall caused by the dynamic excitation of the road spectrum function and analyze techniques for reducing the vibration and enhancing the driving moment of a four-wheel differential-speed mobile robot.A double-wishbone vibration reduction suspension and a moment compensator were designed for a multi-terrain mobile robot by theoretically describing its suspensionwheel-road dynamics.Also,the mobile robot’s road adaptability and traversal abilities were mathematically characterized under dynamic excitation.Co-simulation in ADAMS-MATLAB/Simulink is performed such as the harsh condition of in situ rotation and outdoor experimental schemes are implemented in which the experimental data are analyzed.The experimental result verifies the correctness of the theoretical analysis,as well as the effectiveness of the vibration reduction suspension and the moment compensator.The compatibility of the mobile robot’s driving mechanisms with road traversal abilities has been improved under various terrain conditions in complex field operation scenarios.展开更多
基金supported jointly by one of the major projects of Basic and Applied Basic Research in Guangdong Province“Key Basic Theory Research for Natural Gas Hydrate Trial Production in Shenhu Pilot Test Area”(2020B0301030003)the project from Southern Marine Science&Engineering Guangdong Laboratory Guangzhou City“Research on New Closed Circulation Drilling Technology without Riser”(GML2019ZD0501)the special project for hydrate from China Geological Survey“Trial Production Implementation for Natural Gas Hydrate in Shenhu Pilot Test Area”(DD20190226)。
文摘To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells were selected to carry out the running test of sand control string with pre-packed screen.Meanwhile,the running simulation was performed by using the Landmark software.The results show that the sand control packer and screen can be run smoothly in the wellbore with a dogleg angle of more than 20°/30 m and keep the structure stable.Additionally,the comprehensive friction coefficient is 0.4,under which and the simulation shows that the sand control string for hydrate exploitation can be run smoothly.These findings have important guiding significance for running the completion sand control string in natural gas hydrate exploitation.
基金Supported by Anhui Engineering Research Center on Information Fusion and Control of Intelligent Robot(Grant No.IFCIR2024014)Open Fund Key Laboratory of Machine Vision Inspection of Anhui Provincial,China(Grant No.KLMVI-2024-HIT-14)+2 种基金University Synergy Innovation Program of Anhui Province,China(Grant No.GXXT-2023-076)Anhui Future Technology Research Institute Enterprise Cooperation Project(Grant No.2023qyhz35)2024 Wuhu Science and Technology Planning Project(Grant Nos.2024cj40,2024cxy24).
文摘To effectively improve the adaptability and traversal abilities of a multi-terrain mobile robot under the dynamic excitation of multiple roads,we explore the mobile robot’s vibration and joint driving output stall caused by the dynamic excitation of the road spectrum function and analyze techniques for reducing the vibration and enhancing the driving moment of a four-wheel differential-speed mobile robot.A double-wishbone vibration reduction suspension and a moment compensator were designed for a multi-terrain mobile robot by theoretically describing its suspensionwheel-road dynamics.Also,the mobile robot’s road adaptability and traversal abilities were mathematically characterized under dynamic excitation.Co-simulation in ADAMS-MATLAB/Simulink is performed such as the harsh condition of in situ rotation and outdoor experimental schemes are implemented in which the experimental data are analyzed.The experimental result verifies the correctness of the theoretical analysis,as well as the effectiveness of the vibration reduction suspension and the moment compensator.The compatibility of the mobile robot’s driving mechanisms with road traversal abilities has been improved under various terrain conditions in complex field operation scenarios.