期刊文献+
共找到44,635篇文章
< 1 2 250 >
每页显示 20 50 100
Optimization method of heat transfer architecture for aircraft fuel thermal management systems 被引量:1
1
作者 Jiangtao XU Haotian TAN +3 位作者 Jitao WU Jiayi HAN Sirong SU Hongqing LYU 《Chinese Journal of Aeronautics》 2025年第8期300-312,共13页
Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers ... Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture. 展开更多
关键词 fuel thermal management systems Architecture optimization Graph theory fuel heat sink fuel distribution
原文传递
Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer 被引量:1
2
作者 Wenqing Deng Fanfeng Deng +5 位作者 Ting Zhang Junjie Lin Liang Zhao Gang Li Yi Pan Jiebin Yang 《Chinese Chemical Letters》 2025年第3期188-193,共6页
Fuel cell electric vehicles hold great promise for a diverse range of applications in reducing greenhouse gas emissions.In power fuel cell systems,hydrogen fuel serves as an energy vector.To ensure its suitability,it ... Fuel cell electric vehicles hold great promise for a diverse range of applications in reducing greenhouse gas emissions.In power fuel cell systems,hydrogen fuel serves as an energy vector.To ensure its suitability,it is necessary for the quality of hydrogen to adhere to the standards set by ISO 14687:2019,which sets maximum limits for 14 impurities in hydrogen,aiming to prevent any degradation of fuel cell performance.Ammonia(NH_(3))is a prominent pollutant in fuel cells,and accurate measurements of its concentration are crucial for hydrogen fuel cell quantity.In this study,a novel detection platform was developed for determining NH_(3)in real hydrogen samples.The online analysis platform integrates a self-developed online dilution module with a Fourier transform infrared spectrometer(ODM-FTIR).The ODM-FTIR can be operated fully automatically with remote operation.Under the optimum conditions,this method achieved a wide linear range between(50∼1000)nmol/mol.The limit of detection(LOD)was as low as 2 nmol/mol with a relative standard deviation(RSD,n=7)of 3.6%at a content of 50 nmol/mol.To ensure that the quality of the hydrogen products meets the requirement of proton exchange membrane fuel cell vehicles(PEMFCV),the developed ODM-FTIR system was applied to monitor the NH_(3)content in Chengdu Hydrogen Energy Co.,Ltd.for 21 days during Chengdu 2021 FISU World University Games.The proposed method retains several unique advantages,including a low detection limit,excellent repeatability,high accuracy,high speed,good stability,and calibration flexibility.It is an effective analytical method for accurately quantifying NH_(3)in hydrogen,especially suitable for online analysis.It also provides a new idea for the analysis of other impurity components in hydrogen. 展开更多
关键词 fuel cell electric vehicles Hydrogen fuel ODM-FTIR NH_(3) IMPURITY Online analysis
原文传递
Association between Solid Cooking Fuel Use and Frailty Trajectories:Findings from a Nationwide Cohort in China 被引量:1
3
作者 Yang Liu Bingjie Wu +4 位作者 Bingbing Fan Chunxia Li Chang Su Aidong Liu Tao Zhang 《Biomedical and Environmental Sciences》 2025年第6期653-665,共13页
Objective Burning solid cooking fuel contributes to household air pollution and is associated with frailty.However,how solid cooking fuel use contributes to the development of frailty has not been well illustrated.Met... Objective Burning solid cooking fuel contributes to household air pollution and is associated with frailty.However,how solid cooking fuel use contributes to the development of frailty has not been well illustrated.Methods This study recruited 8,947 participants aged≥45 years from the China Health and Retirement Longitudinal Study,2011–2018.Group-based trajectory modeling was employed to identify frailty trajectories.Multinomial logistic regression was used to assess the association between solid cooking fuel use and frailty trajectories.Population-attributable fractions were used to estimate the frailty burden from solid fuel use.Results We identified three frailty trajectories:low-stable(n=5,789),moderate-increasing(n=2,603),and fast-increasing(n=555).Solid fuel use was associated with higher odds of being in the moderate-increasing(OR:1.24,95%CI:1.08–1.42)and fast-increasing(OR:1.48,95%CI:1.14–1.92)trajectories.These associations were strengthened by longer solid fuel use(P for trend<0.001).Switching to clean fuel significantly reduced the risk of being in these trajectories compared with persistent solid fuel users.Without solid fuel,8%of moderate-and 19%of fast-increasing trajectories demonstrated frailty development like the low-stable group.Conclusion Solid cooking fuel use is associated with frailty trajectories in middle-aged and older Chinese populations. 展开更多
关键词 Solid fuel Ageing FRAILTY Longitudinal studies
暂未订购
Overcoming poisoning issues in hydrogen fuel cells with face-centered tetragonal FePt bimetallic catalysts 被引量:1
4
作者 Daeil Choi Injoon Jang +2 位作者 Taekyung Lee Yun Sik Kang Sung Jong Yoo 《Journal of Materials Science & Technology》 2025年第4期308-316,共9页
Hydrogen fuel cells are expected to play a central role in the next-generation energy paradigm.However,owing to practical limitations,hydrogen is supplied in the form of refined hydrocarbons or alcohols in industrial ... Hydrogen fuel cells are expected to play a central role in the next-generation energy paradigm.However,owing to practical limitations,hydrogen is supplied in the form of refined hydrocarbons or alcohols in industrial applications.Among them,methanol is widely used as a hydrogen source,and CO is inevitably generated during its oxidation process.Even a small amount of CO(∼20 ppm)strongly binds to Pt used as a catalyst,and deactivates it.In addition to CO,surface adsorption of organic cations by binder or ionomer use in alkaline fuel cells is also one of the poisoning issues to be overcome.Herein,we propose FePt bimetallic catalysts that can resist unavoidable CO and organic cation poisoning.Our synthetic strategy,including annealing and acid treatment,allows the catalysts to possess different alloying degrees and surface structures,which in turn induce different levels of resistance to CO and organic-cation poisonings.The correlation between the surface and bulk structures of the catalysts and poisoning resistance was elucidated through X-ray photoemission spectroscopy and electrochemical analysis.The results revealed that an FePt catalyst having an ordered atomic arrangement displayed a better poisoning resistance than that having a disordered arrangement. 展开更多
关键词 fuel cell Intermetallic structure Alloying degree CO resistance Cation adsorption
原文传递
Nanofiber-based polymer electrolyte membranes for fuel cells 被引量:1
5
作者 Ning Liu Shuguang Bi +5 位作者 Yi Zhang Ying Ou Chunli Gong Jianhua Ran Yihuang Chen Yingkui Yang 《Carbon Energy》 2025年第4期1-35,共35页
Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longr... Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longrange continuous structure of the nanofiber,ion-charged groups can be induced to form long-range continuous ion transfer channels in the nanofiber composite membrane,significantly increasing the ion conductivity of the membrane.This review stands apart from previous endeavors by offering a comprehensive overview of the strategies employed over the past decade in utilizing both electrospun and natural nanofibers as key components of proton exchange membranes and anion exchange membranes for fuel cells.Electrospun nanofibers are categorized based on their material properties into two primary groups:(1)ionomer nanofibers,inherently endowed with the ability to conduct H+(such as perfluorosulfonic acid or sulfonated poly(ether ether ketone))or OH-(e.g.,FAA-3),and(2)nonionic polymer nanofibers,comprising inert polymers like polyvinylidene difluoride,polytetrafluoroethylene,and polyacrylonitrile.Notably,the latter often necessitates surface modifications to impart ion transport channels,given their inherent proton inertness.Furthermore,this review delves into the recent progress made with three natural nanofibers derived from biodegradable cellulose—cellulose nanocrystals,cellulose nanofibers,and bacterial nanofibers—as crucial elements in polyelectrolyte membranes.The effect of the physical structure of such nanofibers on polyelectrolyte membrane properties is also briefly discussed.Lastly,the review emphasizes the challenges and outlines potential solutions for future research in the field of nanofiber-based polyelectrolyte membranes,aiming to propel the development of high-performance polymer electrolyte fuel cells. 展开更多
关键词 anion exchange membranes fuel cells NANOFIBERS proton exchange membranes
在线阅读 下载PDF
3D printed hybrid rocket fuels with μAl core-shell particles coated with polyvinylidene fluoride and polydopamine: Enhanced combustion characteristics 被引量:1
6
作者 Qihang Chen Xiaolong Fu +6 位作者 Weitao Yang Suhang Chen Zhiming Guo Rui Hu Huijie Zhang Lianpeng Cui Xu Xia 《Defence Technology(防务技术)》 2025年第4期59-70,共12页
3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have... 3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have been limited. This study explores the impact of poly(vinylidene fluoride) and polydopamine-coated aluminum particles on the thermal and combustion properties of 3D printed hybrid rocket fuels. Physical self-assembly and anti-solvent methods were employed for constructing composite μAl particles. Characterization using SEM, XRD, XPS, FTIR, and μCT revealed a core-shell structure and homogeneous elemental distribution. Thermal analysis showed that PVDF coatings significantly increased the heat of combustion for aluminum particles, with maximum enhancement observed in μAl@PDA@PVDF(denoted as μAl@PF) at 6.20 k J/g. Subsequently, 3D printed fuels with varying pure and composite μAl particle contents were prepared using 3D printing. Combustion tests indicated higher regression rates for Al@PF/Resin composites compared to pure resin, positively correlating with particle content. The fluorocarbon-alumina reaction during the combustion stage intensified Al particle combustion, reducing residue size. A comprehensive model based on experiments provides insights into the combustion process of PDA and PVDF-coated droplets. This study advances the design of 3D-printed hybrid rocket fuels, offering strategies to improve regression rates and energy release, crucial for enhancing solid fuel performance for hybrid propulsion. 展开更多
关键词 Hybrid propulsion Regression rate 3D print fuels Micro aluminum CORE-SHELL mAl@PDA@PVDF
在线阅读 下载PDF
Mechanism of Bronsted-acid-promoted self-photosensitized [2+2] cycloaddition for synthesis of high-performance bio-spiral fuel 被引量:1
7
作者 Ying Chen Yumei Shu +7 位作者 Minhua Ai Wenbiao Chen Chengwen Liu Songyi Zhang Shaojie Wang Haopeng Shi Ji-Jun Zou Lun Pan 《Green Energy & Environment》 2025年第3期585-597,共13页
Photoinduced[2+2]cycloaddition of biomass-derived cycloolefin is a promising approach to synthesize high-energy bio-fuels,however,the conversion efficiency and selectivity are still low.Herein,we provide an acid-promo... Photoinduced[2+2]cycloaddition of biomass-derived cycloolefin is a promising approach to synthesize high-energy bio-fuels,however,the conversion efficiency and selectivity are still low.Herein,we provide an acid-promoted photocycloaddition approach to synthesize a new kind of spiral fuel from biomass-derived cyclohexanone (CHOE) and camphene (CPE).BrΦnsted acids show higher catalytic activity than Lewis acids,and acetic acid (HOAc) possesses the best catalytic performance,with CHOE conversion up to 99.1%.Meanwhile,the HOAc-catalytic effect has been confirmed for[2+2]photocycloaddition of other biomass-derived ketenes and olefins.The catalytic mechanism and dynamics have been investigated,and show that HOAc can bond with C=O groups of CHOE to form H–CHOE complex,which leads to higher light adsorption and longer triplet lifetime.Meanwhile,H–CHOE complex reduces the energy gap between CHOE LUMO and CPE HOMO,shortens the distance of ring-forming atoms,and then decreases the energy barrier (from 103.3 kcal mol^(-1)to 95.8 kcal mol^(-1)) of rate-limiting step.After hydrodeoxygenation,the targeted bio-spiral fuel shows high density of 0.992 g cm^(-3),high neat heat of combustion of 41.89 MJ L^(-1),low kinetic viscosity of 5.69 mm^(2)s^(-1)at 20℃,which is very promising to serve as high-performance aerospace fuel. 展开更多
关键词 BIOfuel Bronsted acid catalysis Spiral fuel [2+2]photocycloaddition
在线阅读 下载PDF
DGFuels公司与MyRechemical公司签订美国内布拉斯加州SAF装置合同
8
作者 许建耘(摘译) 《石油炼制与化工》 北大核心 2025年第4期159-159,共1页
MAIRE股份有限公司通过其子公司MyRechemical获得DGFuels公司授予的一份早期工程、许可和工艺设计包(PDP)合同,该合同基于MAIRE公司专有的NXCircular TM气化技术,将为DGFuels公司位于美国内斯加州的一家SAF工厂提供气化服务。DGFuels是... MAIRE股份有限公司通过其子公司MyRechemical获得DGFuels公司授予的一份早期工程、许可和工艺设计包(PDP)合同,该合同基于MAIRE公司专有的NXCircular TM气化技术,将为DGFuels公司位于美国内斯加州的一家SAF工厂提供气化服务。DGFuels是一家从事可再生氢气和低排放航空燃料的美国公司,该工厂预计将于2029年投入运营,从残余生物质中生产SAF,年产量为4.5×10^(8)L。拟建的气化和气体处理装置每年可处理1 Mt玉米秸秆。 展开更多
关键词 内布拉斯加州 航空燃料 气化技术 SAF fuel MY
在线阅读 下载PDF
Temperature control for liquid-cooled fuel cells based on fuzzy logic and variable-gain generalized supertwisting algorithm
9
作者 CHEN Lin JIA Zhi-huan +1 位作者 DING Tian-wei GAO Jin-wu 《控制理论与应用》 北大核心 2025年第8期1596-1605,共10页
The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade tempe... The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed. 展开更多
关键词 liquid-cooled fuel cell temperature control generalized supertwisting algorithm fuzzy control equilibrium optimizer
在线阅读 下载PDF
Design and Optimization of Anode Catalysts for Direct Ethanol Fuel Cells:Advances and Challenges in C-C bond Activation and Selective Modulation of the C1 Pathway
10
作者 Kai-Chi Qin Meng-Tian Huo +3 位作者 Yu Liang Si-Yuan Zhu Zi-Hao Xing Jin-Fa Chang 《电化学(中英文)》 北大核心 2025年第8期1-22,共22页
Direct ethanol fuel cells(DEFCs)are a promising alternative to conventional energy sources,offering high energy density,environmental sustainability,and operational safety.Compared to methanol fuel cells,DEFCs exhibit... Direct ethanol fuel cells(DEFCs)are a promising alternative to conventional energy sources,offering high energy density,environmental sustainability,and operational safety.Compared to methanol fuel cells,DEFCs exhibit lower toxicity and a more mature preparation process.Unlike hydrogen fuel cells,DEFCs provide superior storage and transport feasibility,as well as cost-effectiveness,significantly enhancing their commercial viability.However,the stable C-C bond in ethanol creates a high activation energy barrier,often resulting in incomplete electrooxidation.Current commercial platinum(Pt)-and palladium(Pd)-based catalysts demonstrate low C-C bond cleavage efficiency(<7.5%),severely limiting DEFC energy output and power density.Furthermore,high catalyst costs and insufficient activity impede large-scale commercialization.Recent advances in DEFC anode catalyst design have focused on optimizing material composition and elucidating catalytic mechanisms.This review systematically examines developments in ethanol electrooxidation catalysts over the past five years,highlighting strategies to improve C1 pathway selectivity and C-C bond activation.Key approaches,such as alloying,nanostructure engineering,and interfacial synergy effects,are discussed alongside their mechanistic implications.Finally,we outline current challenges and future prospects for DEFC commercialization. 展开更多
关键词 Direct ethanol fuel cells Ethanol electrooxidation C-C bond cleavage ELECTROCATALYSIS Anode catalyst
在线阅读 下载PDF
Conversion of Solid Wastes to Fuel Energy Resources through Normal and Catalytic Pyrolysis Process Conditions: A Renewable Resources Strategy
11
作者 Kamau P. Muthee Njogu P. Mwangi Ochieng F. Xavier 《Energy and Power Engineering》 2025年第2期13-34,共22页
This paper presents findings of a study on solid wastes conversion into fuels through pyrolysis of plastic materials, presenting an alternative renewable approach for waste management. Investigations were conducted on... This paper presents findings of a study on solid wastes conversion into fuels through pyrolysis of plastic materials, presenting an alternative renewable approach for waste management. Investigations were conducted on conversion of polypropylene (PP), low-density polyethylene (LDPE) and high-density polyethylene (HDPE) under normal and catalyst mediated process conditions. Plastic wastes were collected from various dumpsites in Nairobi and segregated using plastic resin codes to various classes. Samples were cleaned, dried and shredded to 2 mm and fed into a pyrolysis reactor. The pyrolysis process was conducted at between 220˚C and 420˚C. Pyrolysis gases were condensed in a shell and coil condenser and the incondensable gases were stored in gasbags. Liquid fuels were analysed using Gas chromatograph with a mass spectroscopic detector and Fourier Transform Infrared Spectrometry. The results revealed that the most optimal process conditions were a temperature range of 220˚C - 420˚C at a heating rate of 10˚C per minute. Under these conditions, the oil yields were 53.72% for PP, 62.10% for LDPE, and 64.14% for HDPE. As the heating rate increased from 10˚C/min to 20˚C/min, gas yields increased, rising from 28.05% to 31.12% in PP, 14.96% to 30.62% in LDPE, and 18.51% to 29.49% in HDPE. The introduction of Fe2O3 and Al2O3 catalyst significantly enhanced gas production during pyrolysis, increasing yields from 18% to 61% and 47% respectively. 展开更多
关键词 PYROLYSIS Alternative fuels PLASTIC VALORIZATION POLYPROPYLENE High Density Polyethylene Low Density Polyethylene
在线阅读 下载PDF
Predicting the rate of spread of mixed-fuel surface fires in northeastern China using the Rothermel wildfire behaviour model:a laboratory study
12
作者 Hui Yang Huiying Cai +2 位作者 Guang Yang Daotong Geng Long Sun 《Journal of Forestry Research》 2025年第1期379-390,共12页
The rate of fire spread is a key indicator for assessing forest fire risk and developing fire management plans.The Rothermel model is the most widely used fire spread model,established through laboratory experiments o... The rate of fire spread is a key indicator for assessing forest fire risk and developing fire management plans.The Rothermel model is the most widely used fire spread model,established through laboratory experiments on homogeneous fuels but has not been validated for conifer-deciduous mixed fuel.In this study,Pinus koraiensis and Quercus mongolica litter was used in a laboratory burning experiment to simulate surface fire spread in the field.The effects of fuel moisture content,mixed fuel ratio and slope on spread rate were analyzed.The optimum packing ratio,moisture-damping coefficient and slope parameters in the Rothermel model were modified using the measured spread rate which was positively correlated with slope and negatively with fuel moisture content.As the Q.mongolica load increased,the spread rate increased and was highest at a fuel ratio of 4:6.The model with modified optimal packing ratio and slope parameters has a significantly lower spread rate prediction error than the unmodified model.The spread rate prediction accuracy was significantly improved after modifying the model parameters based on spread rates from laboratory burning simulations. 展开更多
关键词 Rothermel model Mixed fuel fuel moisture content SLOPE Parameter modification
在线阅读 下载PDF
Variation of Membrane Electrode Assembly Catalyst Layer in Unitized Regenerative Fuel Cell
13
作者 Yollanda Nurcholifah Dedi Rohendi +4 位作者 Edy Herianto Majlan Nirwan Syarif Addy Rachmat Dwi Hawa Yulianti Nyimas Febrika S 《电化学(中英文)》 北大核心 2025年第4期32-43,共12页
A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefo... A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefore,this study aimed to compare the performance outcomes of MEA using electrodes with single and three catalyst layers.This study measured Electrochemical Surface Area(ECSA),Electrochemical Impedance Spectroscopy(EIS),X-ray Diffraction analysis(XRD),and X-ray Fluorescence(XRF).Furthermore,the round-trip efficiency(RTE)of the MEA,as w ell as the performance in FC and WE mode,was measured.In comparison,The ECSA values of Pt-Ru/C and Pt/C with three catalyst layers were higher than the single catalyst layer.This result was supported by electrode characterization data for XRD and XRF.The respective electrical conductivity values of Pt-Ru/C and Pt/C with three catalyst layers are also higher than the single cata-lyst layer,and the performance of URFC using MEA with three catalyst layers has the highest value of RTE among the MEA performances of URFC,which is 100%at a current density of 4 mA·cm-2. 展开更多
关键词 Unitized regenerative fuel cell Round trip efficiency Pt-Ru/C Membrane electrode assembly Electrochemical surface area
在线阅读 下载PDF
Mechanical Constitutive Model for Equivalent Solid of Fission Gas Bubbles in Irradiated U-10Mo Fuels
14
作者 Li Yong Yan Feng +2 位作者 Zhang Jing Zang Liye Ding Shurong 《稀有金属材料与工程》 北大核心 2025年第7期1653-1660,共8页
The internal pressure within fission gas bubbles(FGBs)in irradiated nuclear fuels drives mechanical interactions with the surrounding fuel skeleton.To investigate the micromechanical stress fields in irradiated nuclea... The internal pressure within fission gas bubbles(FGBs)in irradiated nuclear fuels drives mechanical interactions with the surrounding fuel skeleton.To investigate the micromechanical stress fields in irradiated nuclear fuels containing pressurized FGBs,a mechanical constitutive model for the equivalent solid of FGBs was developed and validated.This model was based on the modified Van der Waals equation,incorporating the effects of surface tension.Using this model,the micromechanical fields in irradiated U-10Mo fuels with randomly distributed FGBs were calculated during uniaxial tensile testing via the finite element(FE)method.The macroscopic elastic constants of the irradiated U-10Mo fuels were then derived using homogenization theory,and the influences of bubble pressure,bubble size,and porosity on these constants were examined.Results show that adjacent FGBs exhibit mechanical interactions,which leads to distinct stress concentrations in the surrounding fuel skeleton.The macroscopic elastic constants of irradiated U-10Mo fuels decrease with increasing the macroscopic porosity,which can be quantitatively described by the Mori-Tanaka model.In contrast,bubble pressure and size have negligible effects on these constants. 展开更多
关键词 effective mechanical constitutive model fission gas bubbles FE method U-10Mo nuclear fuels macroscopic elastic constants
原文传递
Reduction of methane emission from microbial fuel cells during sulfamethoxazole wastewater treatment
15
作者 Shilong Li Liang Duan +1 位作者 Qiusheng Gao Hengliang Zhang 《Chinese Chemical Letters》 2025年第6期631-636,共6页
Carbon emissions from wastewater treatment contribute to global warming and have received widespread attention.It is necessary to seek low-carbon wastewater treatment technologies.Microbial fuel cells(MFC)and osmotic ... Carbon emissions from wastewater treatment contribute to global warming and have received widespread attention.It is necessary to seek low-carbon wastewater treatment technologies.Microbial fuel cells(MFC)and osmotic microbial fuel cells(Os MFC)are low-carbon technologies that enable both wastewater treatment and energy recovery.In this study,MFC and Os MFC were used to treat sulfamethoxazole(SMX)wastewater,and direct carbon emissions during operation was calculated.The highest SMX removal rate can reach about 40%.Simultaneously,the CH_(4)emission factor was significantly reduced to<6 g CO_(2)/kg of chemical oxygen demand.The accumulation of SMX-degrading bacteria competed with methanogens for carbon source utilization,leading to a significant decrease in the relative abundance of methanogens.It is hoped that this study can provide a sustainable approach to antibiotic wastewater treatment and promote the development of low-carbon wastewater treatment technologies. 展开更多
关键词 Wastewater treatment Methane emission Microbial fuel cell Osmotic microbial fuel cell Sulfamethoxazole removal
原文传递
Covalent organic framework ionomers for medium-temperature fuel cells
16
作者 Ping Liu Fei Yu 《Chinese Journal of Structural Chemistry》 2025年第4期7-8,共2页
Sustainable energy technologies,particularly fuel cells,are gaining attraction for their potential to reduce carbon emissions and provide efficient power.Proton exchange membrane fuel cells(PEMFCs)have been central to... Sustainable energy technologies,particularly fuel cells,are gaining attraction for their potential to reduce carbon emissions and provide efficient power.Proton exchange membrane fuel cells(PEMFCs)have been central to this development.However,one persistent issue with lowtemperature PEMFCs is the dehydration of Nafion ionomer at elevated temperatures,which severely limits proton conductivity.Wang et al.tackle this by introducing a covalent organic framework(COF)interwoven with Nafion,addressing the challenge of maintaining proton conductivity and oxygen transport in medium temperatures(100–120℃). 展开更多
关键词 exchange membrane fuel cells pemfcs covalent organic framework cof interwoven IONOMERS reduce carbon emissions medium temperature fuel cells dehydration nafion ionomer fuel cellsare sustainable energy technologiesparticularly
原文传递
Experimental approaches for carbon corrosion analysis in automotive-PEM fuel cells
17
作者 Sachin Hegde Ralf Worner Bahman Shabani 《Journal of Energy Chemistry》 2025年第7期248-270,共23页
This paper provides a comprehensive review of various experimental methods used to study carbon corrosion in automotive polymer exchange membrane fuel cells.Quantifying the extent of carbon corrosion is essential for ... This paper provides a comprehensive review of various experimental methods used to study carbon corrosion in automotive polymer exchange membrane fuel cells.Quantifying the extent of carbon corrosion is essential for advancing the technology and implementing effective mitigation strategies.While studying degradation events directly within a real-world fuel cell vehicle offers the most reliable insights,the high costs and time demands make it necessary to develop specialised experimental techniques that provide high-resolution data more efficiently and cost-effectively.This review explores the various experimental approaches utilised in automotive application induced carbon corrosion studies globally,including load profiles,test setups,break-in procedures,and cell recovery protocols.In this paper,emphasis is placed on the standardised procedures proposed by leading institutions worldwide,accompanied by critical discussions on these protocols.Furthermore,the paper highlights modified or innovative procedures developed by smaller institutions,universities,and individual researchers,thereby offering a comprehensive overview essential for carbon corrosion analysis.The review also discusses the fundamental principles,benefits,and limitations of various procedures,offering guidance on selecting the most appropriate approach for a given study.Lastly,it addresses the limitations within the current body of literature and outlines potential future prospects. 展开更多
关键词 fuel cell electricvehicles Carbon corrosion Test procedures Test setups DURABILITY PEM fuel cell degradation
在线阅读 下载PDF
Reviewing metal supported solid oxide fuel cells for efficient electricity generation with biofuels for mobility
18
作者 Fábio C.Antunes João P.J.de Oliveira +7 位作者 Ricardo S.de Abreu Thiago Dias Bruno B.N.S.Brandão Josué M.Gonçalves Josimar Ribeiro Julian Hunt Hudson Zanin Gustavo Doubek 《Journal of Energy Chemistry》 2025年第4期106-153,共48页
Metal-Supported Solid Oxide Fuel Cells(MS-SOFCs)hold significant potential for driving the energy transition.These electrochemical devices represent the most advanced generation of Solid Oxide Fuel Cell(SOFCs)and can ... Metal-Supported Solid Oxide Fuel Cells(MS-SOFCs)hold significant potential for driving the energy transition.These electrochemical devices represent the most advanced generation of Solid Oxide Fuel Cell(SOFCs)and can pave the way for mass production and wider adoption than Proton Exchange Membrane Fuel Cells(PEMFCs)due to their fuel flexibility,higher power density and the absence of noble metals in the fabrication processes.This review examines the state-of-the-art of SOFCs and MS-SOFCs,presenting perspectives and research directions for these key technological devices,highlighting novel materials,techniques,architectures,devices,and degradation mechanisms to address current challenges and future opportunities.Techniques such as infiltration/impregnation,ex-solution catalyst synthesis,and the use of a pre-catalytic reformer layer are discussed as their impact on efficiency and prolonged activity.These concepts are also described and connected with well-dispersed nano particles,hindrance of coarsening,and an increased number of Triple Phase Boundaries(TPBs).This review also describes the synergistic use of reformers with MS-SOFCs to compose solutions in energy generation from readily available fuels.Lastly,the End-of-Life(EoL),recycling,and life-cycle assessments(LCAs)of the Fuel Cell Hybrid Electric Vehicles(FCHEVs)were discussed.LCAs comparing Fuel Cell Electric Vehicles(FCEVs)equipped with(PEMFCs)and FCHEVs equipped with MS-SOFCs,both powered with hydrogen(H_(2))generated by different routes were compared.This review aims to provide valuable insights into these key technological devices,emphasizing the importance of robust research and development to enhance performance and lifespan while reducing costs and environmental impact. 展开更多
关键词 Reform Metal-supported solid oxide fuel cell Powertrain systems fuel cell Hybrid electric vehicle BIOfuel
在线阅读 下载PDF
Two-dimensional intermetallic catalyst:an avenue to high-performance fuel cell
19
作者 Kun Wang Han Li +1 位作者 Lei Wang Zhang-Hui Lu 《Rare Metals》 2025年第3期2136-2139,共4页
Anion exchange membrane fuel cells(AEMFCs),regarded as a promising alternative to proton exchange membrane fuel cells(PEMFCs),have garnered increasing attention because of their cost-effectiveness by using the non-nob... Anion exchange membrane fuel cells(AEMFCs),regarded as a promising alternative to proton exchange membrane fuel cells(PEMFCs),have garnered increasing attention because of their cost-effectiveness by using the non-noble metal catalysts and hydrocarbon-based ionomers as membrane[1].However,despite of extensive researches on non-noble metal catalysts such as Co[2]. 展开更多
关键词 non noble metal catalysts two dimensional intermetallic catalysts hydrocarbon based ionomers anion exchange membrane fuel cells proton exchange membrane fuel cells anion exchange membrane fuel cells aemfcs regarded proton exchange membrane fuel cells pemfcs
原文传递
Recommendations for Accelerating the Technological Advancement of the E-Fuel Industry in China
20
作者 Zhao Xinglei Ning chenjun +2 位作者 Liu longjie Ye yi Fan wenqi 《China Oil & Gas》 2025年第1期70-73,共4页
Since the introduction of the dual carbon goals,countries worldwide have been actively exploring next-generation green and clean energy technologies.E-fuels have gained widespread international attention as an effecti... Since the introduction of the dual carbon goals,countries worldwide have been actively exploring next-generation green and clean energy technologies.E-fuels have gained widespread international attention as an effective supplement to the current energy system and a novel approach to reducing carbon emissions.By tracking and understanding the current status and technological advancements of e-fuels,we can better support the strategic planning of China's new energy initiatives. 展开更多
关键词 gained ADVANCE fuels
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部