期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Experimental study on particle dispersion between particle-laden jet and supersonic crossflow in cavity-structured channel
1
作者 Likun MA Pengnian YANG +5 位作者 Zhixun XIA Yifan DUAN Yunchao FENG Libei ZHAO Kangchun ZHAO Luxi XU 《Chinese Journal of Aeronautics》 2025年第6期260-271,共12页
Dispersion of Particle-laden Jet in Supersonic Crossflow(PJSC)is an essential process in many applications,experimental study on which,however,has rarely been reported.In order to gain physical insights into PJSC,a sp... Dispersion of Particle-laden Jet in Supersonic Crossflow(PJSC)is an essential process in many applications,experimental study on which,however,has rarely been reported.In order to gain physical insights into PJSC,a specialized experimental setup capable of producing a supersonic crossflow at Mach 2.6 and a particle-laden jet with particle mass loading up to 60%is developed.Visualization of the particles motion is achieved with the help of high-speed planar laser scattering technology.The dispersion characteristics of PJSC within a supersonic channel structured by cavity are systematically analyzed through six experimental cases.The results indicate that the vortices have a significant influence on particle dispersion,leading to preferential concentration of particles.i.e.particle clusters.The particle dispersion is summarized as the"scale dispersion"pattern.The primary pathways for particles entering the cavity are identified as the shear layer above the cavity and collisions at the cavity rear edge.Among the studied factors,the momentum flux ratio exerts the most substantial influence on the dispersion process.Importantly,a reduction in the injection distance is correlated with less particles entering the cavity.The insights gained from this research provide essential references for furthering understanding particle dispersion mechanisms in supersonic flows and developing highly accurate numerical models. 展开更多
关键词 Supersonic crossflow particle-laden jet Particledispersion Scaledispersion CAVITY
原文传递
Large-eddy Simulation of Near-field Dynamics in a Particle-laden Round Turbulent Jet 被引量:3
2
作者 王兵 张会强 王希麟 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第2期162-169,共8页
This article investigates the near-field dynamics in a particle-laden round turbulent jet in a large-eddy simulation (LES). A point-force two-way coupling model is adopted in the simulation to reveal the particle mo... This article investigates the near-field dynamics in a particle-laden round turbulent jet in a large-eddy simulation (LES). A point-force two-way coupling model is adopted in the simulation to reveal the particle modulation of turbulence. The particles mainly excite the initial instability of the jet and bring about the earlier breakup of vortex rings in the near-field. The flow fluc- tuating intensity either in the axial or in the radial directions is hence increased by particles. The article also describes the mean velocity modulated by particles. The changing statistical velocity induced by particle modulation implies the effects of modulation of the local flow structures. This study is expected to be useful to the control of two-phase turbulent jets. 展开更多
关键词 large-eddy simulation particle-laden jet turbulence structures jet near-fields two-way coupling
原文传递
Characteristics of turbulence transport for momentum and heat in particle-laden turbulent vertical channel flows 被引量:4
3
作者 Caixi Liu Shuai Tang +1 位作者 Lian Shen Yuhong Dong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第5期833-845,共13页
The dynamic and thermal performance of particle-laden turbulent flow is investigated via direction numerical simulation combined with the Lagrangian point-particle tracking under the condition of two-way coupling, wit... The dynamic and thermal performance of particle-laden turbulent flow is investigated via direction numerical simulation combined with the Lagrangian point-particle tracking under the condition of two-way coupling, with a focus on the contributions of particle feedback effect to momentum and heat transfer of turbulence. We take into account the effects of particles on flow drag and Nusselt number and explore the possibility of drag reduction in conjunction with heat transfer enhancement in particle-laden turbulent flows. The effects of particles on momentum and heat transfer are analyzed, and the possibility of drag reduction in conjunction with heat transfer enhancement for the prototypical case of particle-laden turbulent channel flows is addressed. We present results of turbulence modification and heat transfer in turbulent particle-laden channel flow, which shows the heat transfer reduction when large inertial particles with low specific heat capacity are added to the flow. However, we also found an enhancement of the heat transfer and a small reduction of the flow drag when particles with high specific heat capacity are involved. The present results show that particles, which are active agents, interact not only with the velocity field, but also the temperature field and can cause a dissimilarity in momentum and heat transport. This demonstrates that the possibility to increase heat transfer and suppress friction drag can be achieved with addition of particles with different thermal properties. 展开更多
关键词 Direction numerical simulation (DNS) Lagrangian tracking approach Flow drag Heat transfer particle-laden flow
在线阅读 下载PDF
On the hydrodynamic stability of a particle-laden flow in growing flat plate boundary layer 被引量:3
4
作者 XIE Ming-liang LIN Jian-zhong XING Fu-tang 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第2期275-284,共10页
The parabolized stability equation (PSE) was derived to study the linear stability of particle-laden flow in growing Blasius boundary layer. The stability characteristics for various Stokes numbers and particle concen... The parabolized stability equation (PSE) was derived to study the linear stability of particle-laden flow in growing Blasius boundary layer. The stability characteristics for various Stokes numbers and particle concentrations were analyzed after solving the equation numerically using the perturbation method and finite difference. The inclusion of the nonparallel terms produces a reduction in the values of the critical Reynolds number compared with the parallel flow. There is a critical value for the effect of Stokes number, and the critical Stokes number being about unit, and the most efficient instability suppression takes place when Stokes number is of order 10. But the presence of the nonparallel terms does not affect the role of the particles in gas. That is, the addition of fine particles (Stokes number is much smaller than 1) reduces the critical Reynolds number while the addition of coarse particles (Stokes number is much larger than 1) enhances it. Qualitatively the effect of nonparallel mean flow is the same as that for the case of plane parallel flows. 展开更多
关键词 Hydrodynamic stability Blasius boundary layer particle-laden nonparallel flow Numerical simulation
在线阅读 下载PDF
Transient growth in turbulent particle-laden channel flow 被引量:2
5
作者 Yang Song Chunxiao Xu +1 位作者 Weixi Huang Lili Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第1期1-11,共11页
Linear transient growth of optimal perturbations in particle-laden turbulent channel flow is investigated in this work.The problem is formulated in the framework of a Eulerian-Eulerian approach,employing two-way coupl... Linear transient growth of optimal perturbations in particle-laden turbulent channel flow is investigated in this work.The problem is formulated in the framework of a Eulerian-Eulerian approach,employing two-way coupling between fine particles and fluid flow.The model is first validated in laminar cases,after which the transient growth of coherent perturbations in turbulent channel flow is investigated,where the mean particle concentration distribution is obtained by direct numerical simulation.It is shown that the optimal small-scale structures for particles are streamwise streaks just below the optimal streamwise velocity streaks,as was previously found in numerical simulations of particle-laden channel flow.This indicates that the optimal growth of perturbations is a dominant mechanism for the distribution of particles in the near-wall region.The current study also considers the transient growth of small-and large-scale perturbations at relatively high Reynolds numbers,which reveals that the optimal large-scale structures for particles are in the near-wall region while the optimal large-scale structures for fluid enter the outer region. 展开更多
关键词 Optimal transient growth Wall turbulence Coherent structures particle-laden turbulence
原文传递
Experimental Research on Dynamic Erosion of EPDM Insulation Subjected to Particle-Laden Flow 被引量:2
6
作者 徐义华 胡春波 +1 位作者 张胜敏 陈剑 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第4期225-233,共9页
The instantaneous degradation of erosion surface of ethylene propylene diene monomer(EPDM)insulation subjected to the particle-laden flow in two operating conditions was measured by using a real-time X-ray radiography... The instantaneous degradation of erosion surface of ethylene propylene diene monomer(EPDM)insulation subjected to the particle-laden flow in two operating conditions was measured by using a real-time X-ray radiography system.The images of its erosion state and dynamic ablation rate were obtained.And the charring-layer was analyzed by using SEM and energy spectrum.The experimental results indicate that the erosion rate of EPDM insulation layer impacted by low speed and low concentration particle flow is relatively small in the 1st second since the motor starting,but increases rapidly in 1 to 2.5 s,while the erosion rate of EPDM insulation layer impacted by high speed and high concentration particle flow increases rapidly in the 1st second;the ablation rate at the section eroded intensively by particle flow increases at first,then decreases,and goes to stabilization after 4.5 s;the higher speed and concentration particle flow are,the deeper particles get into charring layer,which lead to more thermal increment and thinner charring layer. 展开更多
关键词 propulsion system of aviation & aerospace particle-laden flow EPDM dynamic ablation charring layer
在线阅读 下载PDF
Two-phase micro-and macro-time scales in particle-laden turbulent channel flows
7
作者 Bing Wang Michael Manhart 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期595-604,共10页
The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct nu- merical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases, res... The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct nu- merical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases, respectively. Lagrangian and Eulerian time scales of both phases are cal- culated using velocity correlation functions. Due to flow anisotropy, micro-time scales are not the same with the theo- retical estimations in large Reynolds number (isotropic) tur- bulence. Lagrangian macro-time scales of particle-phase and of fluid-phase seen by particles are both dependent on particle Stokes number. The fluid-phase Lagrangian inte- gral time scales increase with distance from the wall, longer than those time scales seen by particles. The Eulerian inte- gral macro-time scales increase in near-wall regions but de- crease in out-layer regions. The moving Eulerian time scales are also investigated and compared with Lagrangian integral time scales, and in good agreement with previous measure- ments and numerical predictions. For the fluid particles the micro Eulerian time scales are longer than the Lagrangian ones in the near wall regions, while away from the walls the micro Lagrangian time scales are longer. The Lagrangian integral time scales are longer than the Eulerian ones. The results are useful for further understanding two-phase flow physics and especially for constructing accurate prediction models of inertial particle dispersion. 展开更多
关键词 Micro-time scale Lagrangian integral timescale ~ Moving Eulerian time scale particle-laden turbulentflow ~ Particle Stokes number Direct numerical simulation(DNS) Lagrangian trajectory method
在线阅读 下载PDF
Numerical study of the near-wall vortical structures in particle-laden turbulent flow by a new vortex identification method-Liutex 被引量:1
8
作者 Farid Rousta Goodarz Ahmadi +1 位作者 Bamdad Lessani Chaoqun Liu 《Journal of Hydrodynamics》 SCIE EI CSCD 2024年第1期53-60,共8页
This study investigates turbulent particle-laden channel flows using direct numerical simulations employing the Eulerian-Lagrangian method.A two-way coupling approach is adopted to explore the mutual interaction betwe... This study investigates turbulent particle-laden channel flows using direct numerical simulations employing the Eulerian-Lagrangian method.A two-way coupling approach is adopted to explore the mutual interaction between particles and fluid flow.The considered cases include flow with particle Stokes number varying from St=2 up to St=100 while maintaining a constant Reynolds number of Reτ=180 across all cases.A novel vortex identification method,Liutex(Rortex),is employed to assess its efficacy in capturing near-wall turbulent coherent structures and their interactions with particles.The Liutex method provides valuable information on vortex strength and vectors at each location,enabling a detailed examination of the complex interaction between fluid and particulate phases.As widely acknowledged,the interplay between clockwise and counterclockwise vortices in the near-wall region gives rise to low-speed streaks along the wall.These low-speed streaks serve as preferential zones for particle concentration,depending upon the particle Stokes number.It is shown that the Liutex method can capture these vortices and identify the location of low-speed streaks.Additionally,it is observed that the particle Stokes number(size)significantly affects both the strength of these vortices and the streaky structure exhibited by particles.Furthermore,a quantitative analysis of particle behavior in the near-wall region and the formation of elongated particle lines was carried out.This involved examining the average fluid streamwise velocity fluctuations at particle locations,average particle concentration,and the normal velocity of particles for each set of particle Stokes numbers.The investigation reveals the intricate interplay between particles and near-wall structures and the significant influence of particles Stokes number.This study contributes to a deeper understanding of turbulent particle-laden channel flow dynamics. 展开更多
关键词 Turbulent channel flow particle-laden flow direct numerical simulation(DNS) Eulerian-Lagrangian vortex identification turbulence coherent structures Liutex
原文传递
On Kelvin-Helmholtz instability of particulate two-fluid flow
9
作者 C.Q.Ru 《Acta Mechanica Sinica》 2025年第4期41-52,共12页
A hydrodynamic model is used to study Kelvin-Helmholtz(KH)instability of the interface between two particle-laden inviscid fluids moving with two different uniform mean velocities.Explicit eigen-equation is derived to... A hydrodynamic model is used to study Kelvin-Helmholtz(KH)instability of the interface between two particle-laden inviscid fluids moving with two different uniform mean velocities.Explicit eigen-equation is derived to study the effect of suspended particles on the growth rate of KH instability.For dusty gases with negligible volume fraction of heavy particles and small particle-to-fluid mass ratio,the real and imaginary parts of leading-order asymptotic expression derived by the present model for the growth rate are shown to be identical to the earlier results derived by the classical Saffman model established for dusty gases.Beyond the known results,explicit leading-order asymptotic expressions for the effect of suspended particles on the growth rate are derived for several typical cases of basic interest.It is shown that the suspended particles can decrease or increase the growth rate of KH instability depending on the Stokes numbers of the particles and whether the particles are heavier or lighter than the clean fluid.Compared to the mass density of the clean fluid,our results based on leading-order asymptotic solutions show that heavier particles and lighter particles have opposite effects on the growth rate of KH instability,while the effect of neutrally buoyant particles on the growth rate of KH instability is negligible. 展开更多
关键词 KELVIN-HELMHOLTZ INSTABILITY particle-laden Particulate flow INVISCID
原文传递
Effect of particle inertia on temperature statistics in particle-laden homogeneous isotropic turbulence 被引量:8
10
作者 HE Zhu LIU Zhaohui +2 位作者 CHEN Sheng LIU Yaming ZHENG Chuguang 《Science China(Technological Sciences)》 SCIE EI CAS 2006年第2期210-221,共12页
The fluid temperature statistics along particle trajectories is crucial to under-stand the mechanisms of turbulent non-isothermal or reactive fluid-particle flow,especially for the Lagrangian model of non-isothermal p... The fluid temperature statistics along particle trajectories is crucial to under-stand the mechanisms of turbulent non-isothermal or reactive fluid-particle flow,especially for the Lagrangian model of non-isothermal particle-laden turbulent flow.In the present study,direct numerical simulations were utilized to generate temperature field statistics in particle-laden incompressible stationary homogeneous isotropic turbulent flows,which is focused on the effect of particle response time on the Lagrangian statistics of the particle and the fluid temperature seen by particles.It shows that,for the particles withτp/τk<1,the ratio of the fluid intensity seen by particle to fluid temperature intensities deceased asτp/τk increased;while for larger particles(τp/τk>1),the trend is inversed.For small parti-cles(τp/τk<5),the Lagrangian autocorrelation coefficient of the particle temperature R_(p)^(T)decreases as the particle inertia(τp/τk)increases.The trend is reversed for larger particles.The autocorrelation of fluid temperature along the particle path,R_(pf)^(T),decreased as the particle inertia increased.And as the particle inertia increased,the autocorrelation coeffi-cient of the fluid temperature seen by particle decreased more rapidly than that of the particle temperature.The mean temperature gradient contributes to the correlation be-tween the particles velocity component and temperature fluctuations in the direction of the gradient.For the particles withτp/τk<1,the magnitude of the correlation coefficient in-creases as the particle inertia increases,while this value is independent of the particle time constant for larger particles. 展开更多
关键词 direct numerical simulation temperature statistics particle-laden turbulent flow Lagrangian statistics.
原文传递
Algorithms in a Robust Hybrid CFD-DEM Solver for Particle-Laden Flows 被引量:5
11
作者 Heng Xiao Jin Sun 《Communications in Computational Physics》 SCIE 2011年第2期297-323,共27页
A robust and efficient solver coupling computational fluid dynamics(CFD)with discrete element method(DEM)is developed to simulate particle-laden flows in various physical settings.An interpolation algorithm suitable f... A robust and efficient solver coupling computational fluid dynamics(CFD)with discrete element method(DEM)is developed to simulate particle-laden flows in various physical settings.An interpolation algorithm suitable for unstructured meshes is proposed to translate between mesh-based Eulerian fields and particle-based Lagrangian quantities.The interpolation scheme reduces the mesh-dependence of the averaging and interpolation procedures.In addition,the fluid-particle interaction terms are treated semi-implicitly in this algorithm to improve stability and to maintain accuracy.Finally,it is demonstrated that sub-stepping is desirable for fluid-particle systems with small Stokes numbers.A momentum-conserving sub-stepping technique is introduced into the fluid-particle coupling procedure,so that problems with a wide range of time scales can be solved without resorting to excessively small time steps in the CFD solver.Several numerical examples are presented to demonstrate the capabilities of the solver and the merits of the algorithm. 展开更多
关键词 Fluid-particle interaction particle-laden flow discrete element method computational fluid dynamics hybrid model
原文传递
REVIEW OF SOME RESEARCHES ON NANO-AND SUBMICRON BROWNIAN PARTICLE-LADEN TURBULENT FLOW 被引量:1
12
作者 LIN Jian-zhong HUANG Li-zhong 《Journal of Hydrodynamics》 SCIE EI CSCD 2012年第6期801-808,共8页
The study of nano- and submicron Brownian particle-laden turbulent flow has wide industrial applicability and hence has received much attention. The purpose of the present paper is to provide and review some researche... The study of nano- and submicron Brownian particle-laden turbulent flow has wide industrial applicability and hence has received much attention. The purpose of the present paper is to provide and review some researches in this field. The topics are related to the universality, particularity, complexity and importance of nano- and submicron Brownian particle-laden turbulent flow, the models of particle general dynamical equation, the collision behavior of particles. Finally, several open research issues are identified. 展开更多
关键词 particle-laden flow NANO-PARTICLE submicron particle BROWNIAN TURBULENCE
原文传递
Effect of Stokes number on energy modulation of the fluid in turbulent particle-laden channel flows
13
作者 Zhi-feng Wu Jian-zhao Wu +1 位作者 Bo-fu Wang Zhi-ming Lu 《Journal of Hydrodynamics》 SCIE EI CSCD 2022年第3期510-521,共12页
The effect of Stokes number on the kinetic energy(KE)budget in particle-laden turbulent channel flows is examined by conducting two-way coupled direct numerical simulations using the Eulerian-Lagrangian approach.The f... The effect of Stokes number on the kinetic energy(KE)budget in particle-laden turbulent channel flows is examined by conducting two-way coupled direct numerical simulations using the Eulerian-Lagrangian approach.The friction Reynolds number of the single phase channel flow is Re_(τ)=180,the particle mass loading and volume fraction areφ_(m)=0.2,φ_(v)≈10−4,and the Stokes numbers range from St^(+)=14–92.The statistics show that due to the presence of solid particles,the mean velocity is reduced in the vicinity of the wall but enhanced in the outer region,and the off-streamwise intensity of fluctuated velocity and the Reynolds stress are reduced in the whole channel.The analysis on the budgets of turbulent kinetic energy(TKE)finds that the presence of particles induces a significant reduction on both the production and dissipation rates.With increasing Stokes number St^(+),both the production and dissipation rates exhibit non-monotonical trends,i.e.,both initially decrease for St^(+)<40 and then transit to growth after St^(+)>40.This suggests that the particle-induced suppression on TKE production and dissipation is the strongest nearly at St^(+)=40.It is also found that particles act as an additional sink/source term in the budgets of both mean-flow kinetic energy(MKE)and TKE.In addition,we investigate the influence of St^(+)on the“zero point”which indicates the balance of exchanging energy between the particle and fluid phases.It is shown that with increasing St^(+),the“zero point”moves toward the wall,suggesting that the position of perfect following between particle and fluid is closer to the wall with larger St^(+).The present results reveal the Stokes number effects on the spatial transport mechanisms of MKE,TKE in turbulent channel flows laden with inertial particles. 展开更多
关键词 particle-laden flows two-way coupling Stokes numbers kinetic energy budgets
原文传递
沙尘暴中多物理场的结构和耦合特征
14
作者 张欢 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第3期28-39,共12页
沙尘暴是典型的分散两相大气湍流,其中沙尘颗粒高度带电.虽然在单相高雷诺数湍流中已经确认存在超大尺度运动(very-large-scale motions,VLSMs),但在沙尘暴中,尤其是涉及湍动电场方面的研究还相对较少.在本文中,利用大气表面层内现场观... 沙尘暴是典型的分散两相大气湍流,其中沙尘颗粒高度带电.虽然在单相高雷诺数湍流中已经确认存在超大尺度运动(very-large-scale motions,VLSMs),但在沙尘暴中,尤其是涉及湍动电场方面的研究还相对较少.在本文中,利用大气表面层内现场观测数据,我们证明沙尘暴的风速、直径小于10微米的沙尘颗粒浓度(PM10沙尘浓度)和电场存在大致相同大小的VLSMs.此外,我们发现这些多物理场在VLSMs尺度上具有最大的线性耦合,线性相干谱在0.5–0.8之间.通过传递熵分析,我们进一步证明风速和PM10沙尘浓度在波数k_(1)=0.002 m^(-1)处具有最大的非线性耦合,而PM10沙尘浓度和电场在k_(1)=0.15 m^(-1)处具有最大的非线性耦合,这表明风场-粉尘和粉尘-静电相互作用之间存在不同的非线性耦合行为.我们的研究结果揭示了沙尘暴中多物理场的结构和耦合特征,从而为理解复杂的分散两相湍流流动提供了关键信息. 展开更多
关键词 Very-large-scale motions Electric fields particle-laden flow Dust storms
原文传递
Alignment of inertialess spheroidal particles in flow-structure-dominated regions of turbulent channel flow:shape effect
15
作者 Zhiwen Cui Lihao Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第8期45-66,共22页
The alignment of elongated fibers and thin disks is known to be significantly influenced by the presence of fluid coherent structures in near-wall turbulence(Cui et al.2021).However,this earlier study is confined to t... The alignment of elongated fibers and thin disks is known to be significantly influenced by the presence of fluid coherent structures in near-wall turbulence(Cui et al.2021).However,this earlier study is confined to the spheroids with infinitely large or small aspect ratio,and the shape effect of finite aspect ratio on the alignment is not considered.The current study investigates the shape-dependent alignment of inertialess spheroids in structure-dominated regions of channel flow.With utilizing an ensemble-averaged approach for identifying the structure-dominated regions,we analyze the eigensystem of the linear term matrix in the Jeffery equation,which is governed by both particle shape and local fluid velocity gradients.In contrast to earlier conventional analysis based on local vorticity and strain rate,our findings demonstrate that the eigensystem of the Jeffery equation offers a convenient,effective,and universal framework for predicting the alignment behavior of inertialess spheroids in turbulent flows.By leveraging the eigensystem of the Jeffery equation,we uncover a diverse effect of fluid coherent structures on spheroid alignment with different particle shapes.Furthermore,we provide explanations for both shape-independent alignments observed in vortical-core regions and shape-dependent alignments around near-wall streamwise vortices. 展开更多
关键词 Non-spherical particle Direct numerical simulation Wall turbulence particle-laden flow
原文传递
Parallelization strategies for resolved simulations of fluid-structure-particle interactions
16
作者 Jianhua QIN Fei LIAO +1 位作者 Guodan DONG Xiaolei YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期857-872,共16页
Fluid-structure-particle interactions in three spatial dimensions happen in many environmental and engineering flows.This paper presents the parallel algorithms for the hybrid diffuse and sharp interface immersed boun... Fluid-structure-particle interactions in three spatial dimensions happen in many environmental and engineering flows.This paper presents the parallel algorithms for the hybrid diffuse and sharp interface immersed boundary(IB)method developed in our previous work.For the moving structure modeled using the sharp interface IB method,a recursive box method is developed for efficiently classifying the background grid nodes.For the particles modeled using the diffuse interface IB method,a‘master-slave’approach is adopted.For the particle-particle interaction(PPI)and particle-structure interaction(PSI),a fast algorithm for classifying the active and inactive Lagrangian points,which discretize the particle surface,is developed for the‘dry’contact approach.The results show that the proposed recursive box method can reduce the classifying time from 52seconds to 0.3 seconds.Acceptable parallel efficiency is obtained for cases with different particle concentrations.Furthermore,the lubrication model is utilized when a particle approaches a wall,enabling an accurate simulation of the rebounding phenomena in the benchmark particle-wall collision problem.At last,the capability of the proposed computational framework is demonstrated by simulating particle-laden turbulent channel flows with rough walls. 展开更多
关键词 particle-resolved direct numerical simulation particle-laden flow complex geometry resolved fluid-structure-particle interaction(RFSPI) immersed boundary(IB)method
在线阅读 下载PDF
Passive particles driven by self-propelled particle:The wake effect
17
作者 郑凯选 汪静文 +1 位作者 王世锋 聂德明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期500-507,共8页
This work focuses on numerically studying hydrodynamic interaction between a passive particle and a self-propelled particle,termed a squirmer,by using a two-dimensional lattice Boltzmann method(LBM).It is found that t... This work focuses on numerically studying hydrodynamic interaction between a passive particle and a self-propelled particle,termed a squirmer,by using a two-dimensional lattice Boltzmann method(LBM).It is found that the squirmer can capture a passive particle and propel it simultaneously,provided the passive particle is situated within the squirmer's wake.Our research shows that the critical capture distance,which determines whether the particle is captured,primarily depends on the intensity of the squirmer's dipolarity.The stronger dipolarity of squirmer results in an increased critical capture distance.Conversely,the Reynolds number is found to have minimal influence on this interaction.Interestingly,the passive particle,when driven by the squirmer's wake,contributes to a reduction in the squirmer's drag.This results in a mutual acceleration for both particles.Our findings can provide valuable perspectives for formulating the principles of reducing the drag of micro-swimmers and help to achieve the goal of using micro-swimmers to transport goods without physical tethers. 展开更多
关键词 lattice Boltzmann method(LBM) self-propelled particles particle-laden flow
原文传递
Experimental investigation on turbulence modification in a horizontal channel flow at relatively low mass loading 被引量:6
18
作者 Yi Wu Hangfeng Wang Zhaohui Liu Jing Li Liqi Zhang Chuguang Zheng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第2期99-108,共10页
Particle-laden flows in a horizontal channel were investigated by means of a two-phase particle image velocimetry (PIV) technique. Experiments were performed at a Reynolds number of 6826 and the flow is seeded with ... Particle-laden flows in a horizontal channel were investigated by means of a two-phase particle image velocimetry (PIV) technique. Experiments were performed at a Reynolds number of 6826 and the flow is seeded with polythene beads of two sizes, 60μm and 110μm. One was slightly smaller than and the other was larger than the Kolmogorov length scale. The particle loadings were relatively low, with mass loading ratio ranging from 5 ×10^-4 to 4 × 10^-2 and volume fractions from 6×10×-7 to 4.8×10^-5, respectively. The results show that the presence of particles can dramatically modify the turbulence even under the lowest mass loading ratio of 5 × 10^-4. The mean flow is attenuated and de- creased with increasing particle size and mass loading. The turbulence intensities are enhanced in all the cases concerned. With the increase of the mass loading, the intensities vary in a complicated manner in the case of small particles, indicating complicated particle-turbulence interactions; whereas they increase monotonously in the case of large particles. The particle velocities and concentrations are also given. The particles lag behind the fluid in the center region but lead in the wall region, and this trend is more prominent for the large particles. The streamwise particle fluctuations are larger than the gas fluctuations for both sizes of particles, however their varying trend with the mass loadings is not so clear. The wallnormal fluctuations increase with increasing mass loadings. They are smaller in the 60μm particle case but larger in the 110μm particle case than those of the gas phase. It seems that the small particles follow the fluid motion to certain extent while the larger particles are more likely dominated by their own inertia. Finally, remarkable non-uniform distributions of particle concentration are observed, especially for the large particles. The inertia of particles is proved to be very important for the turbulence modification and particles behaviors and thus should be considered in horizontal channels. 展开更多
关键词 Horizontal channel particle-laden flow Turbulence modification PIV
在线阅读 下载PDF
Modeling of finite-size droplets and particles in multiphase flows 被引量:3
19
作者 Prashant Khare Shanwu Wang Vigor Yang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第4期974-982,共9页
The conventional point-particle approach for treating the dispersed phase in a continuous flowfield is extended by taking into account the effect of finite particle size, using a Gaussian interpolation from Lagrangian... The conventional point-particle approach for treating the dispersed phase in a continuous flowfield is extended by taking into account the effect of finite particle size, using a Gaussian interpolation from Lagrangian points to the Eulerian field.The inter-phase exchange terms in the conservation equations are distributed over the volume encompassing the particle size, as opposed to the Dirac delta function generally used in the point-particle approach.The proposed approach is benchmarked against three different flow configurations in a numerical framework based on large eddy simulation(LES) turbulence closure.First, the flow over a circular cylinder is simulated for a Reynolds number of 3900 at 1 atm pressure.Results show good agreement with experimental data for the mean streamwise velocity and the vortex shedding frequency in the wake region.The calculated flowfield exhibits correct physics, which the conventional point-particle approach fails to capture.The second case deals with diesel jet injection in quiescent environment over a pressure range of 1.1–5.0 MPa.The calculated jet penetration depth closely matches measurements.It decreases with increasing chamber pressure, due to enhanced drag force in a denser fluid environment.Finally, water and acetone jet injection normal to air crossflow is studied at1 atm.The calculated jet penetration and Sauter mean diameter of liquid droplets compare very well with measurements. 展开更多
关键词 Droplets Finite-size effects Large eddy simulation Multiphase flow particle-laden flow
原文传递
Preferential orientation of tracer spheroids in turbulent channel flow 被引量:2
20
作者 Yucheng Jie Lihao Zhao +1 位作者 Chunxiao Xu Helge I. Andersson 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第3期212-214,共3页
Axis-symmetric spheroids, such as rod-like and disk-like particles, have been found to orient preferentially in near-wall turbulence by both experiment and numerical simulation. In current work we examined the orienta... Axis-symmetric spheroids, such as rod-like and disk-like particles, have been found to orient preferentially in near-wall turbulence by both experiment and numerical simulation. In current work we examined the orientation of inertialess spheroids in a turbulent channel flow at medium friction Reynolds number Reτ=100 given based on the half of channel height. Both elongated prolate spheroid and flat oblate spheroid are considered and further compared with the reference case of spherical particle. The statistical results show that in near wall region the prolate spheroids tend to align in the streamwise direction while the oblate spheroids prefer to orient in the wallnormal direction, which are consistent with earlier observation in low Reynolds number (Reτ=180)wall turbulence. Around the channel center we found that the orientation of spheroids is not fully isotropic, even though the fluid vorticity are almost isotropic. The mechanism that gives rise to such particle orientations in wall-turbulence has been found to be related to fluid Lagrangian stretching and compression (Zhao and Andersson 2016). Therefore, we computed the left Cauchy-Green strain tensor along Lagrangian trajectories of tracer spheroids in current flow field and analyzed the fluid Lagrangian stretching and compression. The results indicated that, similar to the earlier observations, the directions of the Lagrangian stretching and compression in near-wall region are in the streamwise and wall-normal directions, respectively. Furthermore, cross over the channel the prolate spheroids aligned with the direction of Lagrangian stretching but oblate spheroids oriented with the direction of Lagrangian compression. The weak anisotropy of orientations of fluid Lagrangian stretching and compression observed at the channel center could be the reason for the aforementioned modest anisotropic orientation of spheroids in channel central region. 展开更多
关键词 Direct numerical simulation TURBULENT channel FLOW particle-laden FLOW NON-SPHERICAL particle
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部