期刊文献+
共找到25,382篇文章
< 1 2 250 >
每页显示 20 50 100
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
1
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
2
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
Particle Swarm Optimization: Advances, Applications, and Experimental Insights 被引量:1
3
作者 Laith Abualigah 《Computers, Materials & Continua》 2025年第2期1539-1592,共54页
Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a... Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications,but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms.Covering six strategic areas,which include Data Mining,Machine Learning,Engineering Design,Energy Systems,Healthcare,and Robotics,the study demonstrates the versatility and effectiveness of the PSO.Experimental results are,however,used to show the strong and weak parts of PSO,and performance results are included in tables for ease of comparison.The results stress PSO’s efficiency in providing optimal solutions but also show that there are aspects that need to be improved through combination with algorithms or tuning to the parameters of the method.The review of the advantages and limitations of PSO is intended to provide academics and practitioners with a well-rounded view of the methods of employing such a tool most effectively and to encourage optimized designs of PSO in solving theoretical and practical problems in the future. 展开更多
关键词 particle swarm optimization(PSO) optimization algorithms data mining machine learning engineer-ing design energy systems healthcare applications ROBOTICS comparative analysis algorithm performance evaluation
在线阅读 下载PDF
A Multi-Objective Particle Swarm Optimization Algorithm Based on Decomposition and Multi-Selection Strategy
4
作者 Li Ma Cai Dai +1 位作者 Xingsi Xue Cheng Peng 《Computers, Materials & Continua》 SCIE EI 2025年第1期997-1026,共30页
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition... The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance. 展开更多
关键词 Multi-objective optimization multi-objective particle swarm optimization DECOMPOSITION multi-selection strategy
在线阅读 下载PDF
Evolutionary Particle Swarm Optimization Algorithm Based on Collective Prediction for Deployment of Base Stations
5
作者 Jiaying Shen Donglin Zhu +5 位作者 Yujia Liu Leyi Wang Jialing Hu Zhaolong Ouyang Changjun Zhou Taiyong Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期345-369,共25页
The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(I... The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO. 展开更多
关键词 particle swarm optimization effective coverage area global optimization base station deployment
在线阅读 下载PDF
Enhanced Particle Swarm Optimization Algorithm Based on SVM Classifier for Feature Selection
6
作者 Xing Wang Huazhen Liu +2 位作者 Abdelazim G.Hussien Gang Hu Li Zhang 《Computer Modeling in Engineering & Sciences》 2025年第3期2791-2839,共49页
Feature selection(FS)is essential in machine learning(ML)and data mapping by its ability to preprocess high-dimensional data.By selecting a subset of relevant features,feature selection cuts down on the dimension of t... Feature selection(FS)is essential in machine learning(ML)and data mapping by its ability to preprocess high-dimensional data.By selecting a subset of relevant features,feature selection cuts down on the dimension of the data.It excludes irrelevant or surplus features,thus boosting the performance and efficiency of the model.Particle Swarm Optimization(PSO)boasts a streamlined algorithmic framework and exhibits rapid convergence traits.Compared with other algorithms,it incurs reduced computational expenses when tackling high-dimensional datasets.However,PSO faces challenges like inadequate convergence precision.Therefore,regarding FS problems,this paper presents a binary version enhanced PSO based on the Support Vector Machines(SVM)classifier.First,the Sand Cat Swarm Optimization(SCSO)is added to enhance the global search capability of PSO and improve the accuracy of the solution.Secondly,the Latin hypercube sampling strategy initializes populations more uniformly and helps to increase population diversity.The last is the roundup search strategy introducing the grey wolf hierarchy idea to help improve convergence speed.To verify the capability of Self-adaptive Cooperative Particle Swarm Optimization(SCPSO),the CEC2020 test suite and CEC2022 test suite are selected for experiments and applied to three engineering problems.Compared with the standard PSO algorithm,SCPSO converges faster,and the convergence accuracy is significantly improved.Moreover,SCPSO’s comprehensive performance far exceeds that of other algorithms.Six datasets from the University of California,Irvine(UCI)database were selected to evaluate SCPSO’s effectiveness in solving feature selection problems.The results indicate that SCPSO has significant potential for addressing these problems. 展开更多
关键词 Feature selection SVM particle swarm optimization sand cat swarm optimization engineering problems
在线阅读 下载PDF
Optimizing Feature Selection by Enhancing Particle Swarm Optimization with Orthogonal Initialization and Crossover Operator
7
作者 Indu Bala Wathsala Karunarathne Lewis Mitchell 《Computers, Materials & Continua》 2025年第7期727-744,共18页
Recent advancements in computational and database technologies have led to the exponential growth of large-scale medical datasets,significantly increasing data complexity and dimensionality in medical diagnostics.Effi... Recent advancements in computational and database technologies have led to the exponential growth of large-scale medical datasets,significantly increasing data complexity and dimensionality in medical diagnostics.Efficient feature selection methods are critical for improving diagnostic accuracy,reducing computational costs,and enhancing the interpretability of predictive models.Particle Swarm Optimization(PSO),a widely used metaheuristic inspired by swarm intelligence,has shown considerable promise in feature selection tasks.However,conventional PSO often suffers from premature convergence and limited exploration capabilities,particularly in high-dimensional spaces.To overcome these limitations,this study proposes an enhanced PSO framework incorporating Orthogonal Initializa-tion and a Crossover Operator(OrPSOC).Orthogonal Initialization ensures a diverse and uniformly distributed initial particle population,substantially improving the algorithm’s exploration capability.The Crossover Operator,inspired by genetic algorithms,introduces additional diversity during the search process,effectively mitigating premature convergence and enhancing global search performance.The effectiveness of OrPSOC was rigorously evaluated on three benchmark medical datasets—Colon,Leukemia,and Prostate Tumor.Comparative analyses were conducted against traditional filter-based methods,including Fast Clustering-Based Feature Selection Technique(Fast-C),Minimum Redundancy Maximum Relevance(MinRedMaxRel),and Five-Way Joint Mutual Information(FJMI),as well as prominent metaheuristic algorithms such as standard PSO,Ant Colony Optimization(ACO),Comprehensive Learning Gravitational Search Algorithm(CLGSA),and Fuzzy-Based CLGSA(FCLGSA).Experimental results demonstrated that OrPSOC consistently outperformed these existing methods in terms of classification accuracy,computational efficiency,and result stability,achieving significant improvements even with fewer selected features.Additionally,a sensitivity analysis of the crossover parameter provided valuable insights into parameter tuning and its impact on model performance.These findings highlight the superiority and robustness of the proposed OrPSOC approach for feature selection in medical diagnostic applications and underscore its potential for broader adoption in various high-dimensional,data-driven fields. 展开更多
关键词 Machine learning feature selection classification medical diagnosis orthogonal initialization CROSSOVER particle swarm optimization
在线阅读 下载PDF
Reliability Topology Optimization Based on Kriging-Assisted Level Set Function and Novel Dynamic Hybrid Particle Swarm Optimization Algorithm
8
作者 Hang Zhou Xiaojun Ding +1 位作者 Song Chen Qijun Zhang 《Computer Modeling in Engineering & Sciences》 2025年第8期1907-1933,共27页
Structural Reliability-Based Topology Optimization(RBTO),as an efficient design methodology,serves as a crucial means to ensure the development ofmodern engineering structures towards high performance,long service lif... Structural Reliability-Based Topology Optimization(RBTO),as an efficient design methodology,serves as a crucial means to ensure the development ofmodern engineering structures towards high performance,long service life,and high reliability.However,in practical design processes,topology optimization must not only account for the static performance of structures but also consider the impacts of various responses and uncertainties under complex dynamic conditions,which traditional methods often struggle accommodate.Therefore,this study proposes an RBTO framework based on a Kriging-assisted level set function and a novel Dynamic Hybrid Particle Swarm Optimization(DHPSO)algorithm.By leveraging the Kriging model as a surrogate,the high cost associated with repeatedly running finite element analysis processes is reduced,addressing the issue of minimizing structural compliance.Meanwhile,the DHPSO algorithm enables a better balance between the population’s developmental and exploratory capabilities,significantly accelerating convergence speed and enhancing global convergence performance.Finally,the proposed method is validated through three different structural examples,demonstrating its superior performance.Observed that the computational that,compared to the traditional Solid Isotropic Material with Penalization(SIMP)method,the proposed approach reduces the upper bound of structural compliance by approximately 30%.Additionally,the optimized results exhibit clear material interfaces without grayscale elements,and the stress concentration factor is reduced by approximately 42%.Consequently,the computational results fromdifferent examples verify the effectiveness and superiority of this study across various fields,achieving the goal of providing more precise optimization results within a shorter timeframe. 展开更多
关键词 Reliability topology optimization kriging model level set function dynamic hybrid particle swarm optimization engineering structure
在线阅读 下载PDF
Review on Particle Swarm Optimization:Application Toward Autonomous Dynamical Systems
9
作者 Kavan Bojappa Junsoo Lee 《IEEE/CAA Journal of Automatica Sinica》 2025年第9期1762-1775,共14页
Complex autonomous dynamical systems require sophisticated optimization methods that encompass environment awareness,path planning,and decision-making.swarm intelligence algorithms,inspired by natural phenomena such a... Complex autonomous dynamical systems require sophisticated optimization methods that encompass environment awareness,path planning,and decision-making.swarm intelligence algorithms,inspired by natural phenomena such as bird flocks and fish schools,have undergone significant advancements over recent decades.This paper provides a comprehensive review of particle swarm optimization(PSO)in the context of autonomous systems.We specifically examine the application of PSO to multi-agent dynamical systems,reviewing how PSO variants are employed to tackle diverse optimization challenges across various platforms,including ground vehicles,autonomous underwater vehicles,and unmanned aerial vehicles.Additionally,we delve into the use of PSO within swarm robotics and multi-agent systems.The paper concludes with an outline of potential future research directions,particularly focusing on the application of PSO to the multi-agent rendezvous problem in autonomous systems. 展开更多
关键词 Autonomous system multi-agent systems particle swarm optimization(PSO) swarm intelligence
在线阅读 下载PDF
Correlation-Guided Particle Swarm Optimization Approach for Feature Selection in Fault Diagnosis
10
作者 Ke Chen Wenjie Wang +2 位作者 Fangfang Zhang Jing Liang Kunjie Yu 《IEEE/CAA Journal of Automatica Sinica》 2025年第11期2329-2341,共13页
A large number of features are involved in fault diagnosis,and it is challenging to identify important and relative features for fault classification.Feature selection selects suitable features from the fault dataset ... A large number of features are involved in fault diagnosis,and it is challenging to identify important and relative features for fault classification.Feature selection selects suitable features from the fault dataset to determine the root cause of the fault.Particle swarm optimization(PSO)has shown promising results in performing feature selection due to its promising search effectiveness and ease of implementation.However,most PSObased feature selection approaches for fault diagnosis do not adequately take domain-specific a priori knowledge into account.In this study,we propose a correlation-guided PSO feature selection approach for fault diagnosis that focuses on improving the initialisation effectiveness,individual exploration ability,and population diversity.To be more specific,an initialisation strategy based on feature correlation is designed to enhance the quality of the initial population,while a probability individual updating mechanism is proposed to improve the exploitation ability.In addition,a sample shrinkage strategy is developed to enhance the ability to jump out of local optimal.Results on four public fault diagnosis datasets show that the proposed approach can select smaller feature subsets to achieve higher classification accuracy than other state-of-the-art feature selection methods in most cases.Furthermore,the effectiveness of the proposed approach is also verified by examining real-world fault diagnosis problems. 展开更多
关键词 Classification CORRELATION fault diagnosis feature selection particle swarm optimization(PSO)
在线阅读 下载PDF
Particle Swarm Optimization Algorithm for Feature Selection Inspired by Peak Ecosystem Dynamics
11
作者 Shaobo Deng Meiru Xie +3 位作者 Bo Wang Shuaikun Zhang Sujie Guan Min Li 《Computers, Materials & Continua》 2025年第2期2723-2751,共29页
In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update ... In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update based on two extreme values: personal best and global best, which limits the diversity of information. Ideally, particles should learn from multiple advantageous particles to enhance interactivity and optimization efficiency. Accordingly, this paper proposes a PSO that simulates the evolutionary dynamics of species survival in mountain peak ecology (PEPSO) for feature selection. Based on the pyramid topology, the algorithm simulates the features of mountain peak ecology in nature and the competitive-cooperative strategies among species. According to the principles of the algorithm, the population is first adaptively divided into many subgroups based on the fitness level of particles. Then, particles within each subgroup are divided into three different types based on their evolutionary levels, employing different adaptive inertia weight rules and dynamic learning mechanisms to define distinct learning modes. Consequently, all particles play their respective roles in promoting the global optimization performance of the algorithm, similar to different species in the ecological pattern of mountain peaks. Experimental validation of the PEPSO performance was conducted on 18 public datasets. The experimental results demonstrate that the PEPSO outperforms other PSO variant-based feature selection methods and mainstream feature selection methods based on intelligent optimization algorithms in terms of overall performance in global search capability, classification accuracy, and reduction of feature space dimensions. Wilcoxon signed-rank test also confirms the excellent performance of the PEPSO. 展开更多
关键词 Machine learning feature selection evolutionary algorithm particle swarm optimization
在线阅读 下载PDF
Microseismic source location based on multi-sensor arrays and particle swarm optimization algorithm
12
作者 LIU Ling-hao SHANG Xue-yi +2 位作者 WANG Yi LI Xi-bing FENG Fan 《Journal of Central South University》 2025年第9期3297-3313,共17页
Microseismic (MS) source location plays an important role in MS monitoring. This paper proposes a MS source location method based on particle swarm optimization (PSO) and multi-sensor arrays, where a free weight joint... Microseismic (MS) source location plays an important role in MS monitoring. This paper proposes a MS source location method based on particle swarm optimization (PSO) and multi-sensor arrays, where a free weight joints the P-wave first arrival data. This method adaptively adjusts the preference for “superior” arrays and leverages “inferior” arrays to escape local optima, thereby improving the location accuracy. The effectiveness and stability of this method were validated through synthetic tests, pencil-lead break (PLB) experiments, and mining engineering applications. Specifically, for synthetic tests with 1 μs Gaussian noise and 100 μs large noise in rock samples, the location error of the multi-sensor arrays jointed location method is only 0.30 cm, which improves location accuracy by 97.51% compared to that using a single sensor array. The average location error of PLB events on three surfaces of a rock sample is reduced by 48.95%, 26.40%, and 55.84%, respectively. For mine blast event tests, the average location error of the dual sensor arrays jointed method is 62.74 m, 54.32% and 14.29% lower than that using only sensor arrays 1 and 2, respectively. In summary, the proposed multi-sensor arrays jointed location method demonstrates good noise resistance, stability, and accuracy, providing a compelling new solution for MS location in relevant mining scenarios. 展开更多
关键词 microseismic monitoring source location particle swarm optimization multi-sensor arrays
在线阅读 下载PDF
Misalignment-Tolerant Coupling Coils Design for Underwater Wireless Power Transfer Using Particle Swarm Optimization
13
作者 Yu-Shan Cheng Bo-Zheng Luo +1 位作者 Guan-Hao Su Yi-Hua Liu 《Computers, Materials & Continua》 2025年第9期5791-5809,共19页
Underwater charging stations allow Autonomous Underwater Vehicles(AUVs)to recharge batteries,extending missions and reducing surface support.However,efficient wireless power transfer requires overcoming alignment chal... Underwater charging stations allow Autonomous Underwater Vehicles(AUVs)to recharge batteries,extending missions and reducing surface support.However,efficient wireless power transfer requires overcoming alignment challenges and environmental variations in conductive seawater.This paper employs Particle Swarm Optimization(PSO)to design coupling coils specifically applied for underwater wireless charging station systems.The establishment of underwater charging stations enables Autonomous Underwater Vehicles(AUVs)to recharge batteries underwater,extending mission duration and reducing reliance on surface-based resupply operations.The proposed charging system is designed to address the unique challenges of the underwater environment,such as alignment disruptions and performance degradation caused by seawater conductivity and environmental fluctuations.Given these distinctive underwater conditions,this study explores coupling coil design comprehensively.COMSOL Multiphysics and MATLAB software were integrated to develop an automated coil evaluation platform,effectively assessing coil coupling under varying misalignment conditions.PSO was employed to optimize coil inner diameters,simulating coupling performance across different misalignment scenarios to achieve high misalignment tolerance.The optimized coils were subsequently implemented in a full-bridge series-series resonant converter and compared with control group coils.Results confirmed the PSO-optimized coils enhanced misalignment resistance,exhibiting a variation of coupling coefficient as low as 4.26%,while the control group coils have a variation of 10.34%.In addition,compared to control group coils,PSO-optimized coils achieved an average efficiency of 71%in air and 67%in seawater,outperforming the control group coils at 66%and 60%,respectively.These findings demonstrate the effectiveness of the proposed PSO-based coil design in improving underwater wireless power transfer reliability and efficiency. 展开更多
关键词 Coupling coils particle swarm optimization wireless power transfer underwater application
在线阅读 下载PDF
A Fuzzy Multi-Objective Framework for Energy Optimization and Reliable Routing in Wireless Sensor Networks via Particle Swarm Optimization
14
作者 Medhat A.Tawfeek Ibrahim Alrashdi +1 位作者 Madallah Alruwaili Fatma M.Talaat 《Computers, Materials & Continua》 2025年第5期2773-2792,共20页
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu... Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use. 展开更多
关键词 Wireless sensor networks particle swarm optimization fuzzy multi-objective framework routing stability
在线阅读 下载PDF
An Improved Animated Oat Optimization Algorithm with Particle Swarm Optimization for Dry Eye Disease Classification
15
作者 Essam H.Houssein Eman Saber Nagwan Abdel Samee 《Computer Modeling in Engineering & Sciences》 2025年第8期2445-2480,共36页
Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design... Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design(CAD)system that presents a new method for DED classification called(IAOO-PSO),which is a powerful Feature Selection technique(FS)that integrates with Opposition-Based Learning(OBL)and Particle Swarm Optimization(PSO).We improve the speed of convergence with the PSO algorithmand the exploration with the IAOO algorithm.The IAOO is demonstrated to possess superior global optimization capabilities,as validated on the IEEE Congress on Evolutionary Computation 2022(CEC’22)benchmark suite and compared with seven Metaheuristic(MH)algorithms.Additionally,an IAOO-PSO model based on Support Vector Machines(SVMs)classifier is proposed for FS and classification,where the IAOO-PSO is used to identify the most relevant features.This model was applied to the DED dataset comprising 20,000 cases and 26 features,achieving a high classification accuracy of 99.8%,which significantly outperforms other optimization algorithms.The experimental results demonstrate the reliability,success,and efficiency of the IAOO-PSO technique for both FS and classification in the detection of DED. 展开更多
关键词 Feature selection(FS) machine learning(ML) animated oat optimization algorithm(AOO) dry eye disease(DED) oppositional-based learning(OBL) particle swarm optimization(PSO)
在线阅读 下载PDF
Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems 被引量:21
16
作者 谭跃 谭冠政 邓曙光 《Journal of Central South University》 SCIE EI CAS 2014年第7期2731-2742,共12页
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.... A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions. 展开更多
关键词 particle swarm optimization chaotic search integer programming problem mixed integer programming problem
在线阅读 下载PDF
Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem 被引量:27
17
作者 CHEN Ai-ling YANG Gen-ke WU Zhi-ming 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第4期607-614,共8页
Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational comp... Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational complexity. A new hybrid ap- proximation algorithm is developed in this work to solve the problem. In the hybrid algorithm, discrete particle swarm optimiza- tion (DPSO) combines global search and local search to search for the optimal results and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The computational study showed that the proposed algorithm is a feasible and effective approach for capacitated vehicle routing problem, especially for large scale problems. 展开更多
关键词 Capacitated routing problem Discrete particle swarm optimization (DPSO) Simulated annealing (SA)
在线阅读 下载PDF
Novel Discrete Particle Swarm Optimization Based on Huge Value Penalty for Solving Engineering Problem 被引量:7
18
作者 YU Ying YU Xiaochun LI Yongsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期410-418,共9页
For the purpose of solving the engineering constrained discrete optimization problem, a novel discrete particle swarm optimization(DPSO) is proposed. The proposed novel DPSO is based on the idea of normal particle s... For the purpose of solving the engineering constrained discrete optimization problem, a novel discrete particle swarm optimization(DPSO) is proposed. The proposed novel DPSO is based on the idea of normal particle swarm optimization(PSO), but deals with the variables as discrete type, the discrete optimum solution is found through updating the location of discrete variable. To avoid long calculation time and improve the efficiency of algorithm, scheme of constraint level and huge value penalty are proposed to deal with the constraints, the stratagem of reproducing the new particles and best keeping model of particle are employed to increase the diversity of particles. The validity of the proposed DPSO is examined by benchmark numerical examples, the results show that the novel DPSO has great advantages over current algorithm. The optimum designs of the 100-1 500 mm bellows under 0.25 MPa are fulfilled by DPSO. Comparing the optimization results with the bellows in-service, optimization results by discrete penalty particle swarm optimization(DPPSO) and theory solution, the comparison result shows that the global discrete optima of bellows are obtained by proposed DPSO, and confirms that the proposed novel DPSO and schemes can be used to solve the engineering constrained discrete problem successfully. 展开更多
关键词 discrete particle swarm optimization location updating scheme of constraints level huge value penalty optimization design BELLOWS
在线阅读 下载PDF
APPLYING PARTICLE SWARM OPTIMIZATION TO JOB-SHOPSCHEDULING PROBLEM 被引量:5
19
作者 XiaWeijun WuZhiming ZhangWei YangGenke 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第3期437-441,共5页
A new heuristic algorithm is proposed for the problem of finding the minimummakespan in the job-shop scheduling problem. The new algorithm is based on the principles ofparticle swarm optimization (PSO). PSO employs a ... A new heuristic algorithm is proposed for the problem of finding the minimummakespan in the job-shop scheduling problem. The new algorithm is based on the principles ofparticle swarm optimization (PSO). PSO employs a collaborative population-based search, which isinspired by the social behavior of bird flocking. It combines local search (by self experience) andglobal search (by neighboring experience), possessing high search efficiency. Simulated annealing(SA) employs certain probability to avoid becoming trapped in a local optimum and the search processcan be controlled by the cooling schedule. By reasonably combining these two different searchalgorithms, a general, fast and easily implemented hybrid optimization algorithm, named HPSO, isdeveloped. The effectiveness and efficiency of the proposed PSO-based algorithm are demonstrated byapplying it to some benchmark job-shop scheduling problems and comparing results with otheralgorithms in literature. Comparing results indicate that PSO-based algorithm is a viable andeffective approach for the job-shop scheduling problem. 展开更多
关键词 Job-shop scheduling problem particle swarm optimization Simulated annealingHybrid optimization algorithm
在线阅读 下载PDF
Solving resource availability cost problem in project scheduling by pseudo particle swarm optimization 被引量:4
20
作者 Jianjun Qi Bo Guo +1 位作者 Hongtao Lei Tao Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期69-76,共8页
This paper considers a project scheduling problem with the objective of minimizing resource availability costs appealed to finish al activities before the deadline. There are finish-start type precedence relations amo... This paper considers a project scheduling problem with the objective of minimizing resource availability costs appealed to finish al activities before the deadline. There are finish-start type precedence relations among the activities which require some kinds of renewable resources. We predigest the process of sol-ving the resource availability cost problem (RACP) by using start time of each activity to code the schedule. Then, a novel heuris-tic algorithm is proposed to make the process of looking for the best solution efficiently. And then pseudo particle swarm optimiza-tion (PPSO) combined with PSO and path relinking procedure is presented to solve the RACP. Final y, comparative computational experiments are designed and the computational results show that the proposed method is very effective to solve RACP. 展开更多
关键词 project scheduling resource availability cost problem(RACP) HEURISTICS particle swarm optimization (PSO) path relin-king.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部