Developing the railway transport sector is a challenging scientific,economic and social research topic starting with ensuring human security.The main topic that should be developed in that sense is the ballast stabili...Developing the railway transport sector is a challenging scientific,economic and social research topic starting with ensuring human security.The main topic that should be developed in that sense is the ballast stability and dynamical behaviour under external loading and environmental changes.This paper investigates the effect of particle size distribution and normal pressure on the mechanical response of a ballast bed.Grading curves of ballast layers with different sizes are illustrated to discuss their strength behaviour under various strains to deduce the significant effect on the direct shear performance of the ballast layer.Direct shear tests with different Particle Size Distribution(PSD)were reproduced using the Discrete Element Method(DEM).It is noticed that when the number of small-sized ballast increases,the shear strength and the friction angle increase to varying degrees under different normal pressures,with an average increase of 27%and 8%,respectively.When the number of large-sized ballast decreases,the shear strength and the friction angle decrease to varying degrees under different normal pressures,with an average decrease of 6%and 3%,respectively.展开更多
The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional meth...The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.展开更多
The distribution of adsorbent particle sizes typically has a significant impact on adsorption performance.Most fixed-bed adsorption studies adopt the assumption of average particle size to simplify the adsorption mode...The distribution of adsorbent particle sizes typically has a significant impact on adsorption performance.Most fixed-bed adsorption studies adopt the assumption of average particle size to simplify the adsorption model,but this does not eliminate the deviation between experiments and simulations caused by particle size distribution in practice.In this study,the population balance equation(PBE)and fixed-bed adsorption kinetics model were combined to simulate the adsorption process in a fixed-bed reactor,modeling the distribution of adsorbate uptake over time on adsorbent particles of different sizes.We integrated and optimized the PBE and fixed-bed mass transfer model in the algorithm,and the resulting combined model adopts a variable time step size,which can achieve a balance between computational efficiency and error while ensuring computational convergence.By slicing the model in the spatial dimension,multiple sets of PBE can be calculated in parallel,improving computational efficiency.The adsorption process of single-component and multi-component CO_(2)/CH_(4)/N_(2)on 4A zeolite without binder was simulated,and the influence of adsorbent particle size distribution was analyzed.Simulation results show that the assumption of average adsorbent particle size,which was commonly made in published work,will underestimate the time required for adsorbates to break through the fixed bed compared with the assumption of uniform adsorbent particle size.This model helps to consider the impact of adsorbent particle size distribution on the adsorption process,thereby improving the prediction accuracy of adsorbent performance.展开更多
Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose ...Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose the suitable initial gray level threshold whichis used to change the gray level images taken by PIV to black and white ones, then every particle inan image is isolated totally. For every isolating particle, its contour is tracked by the edgeenhancement filter function and kept by Freeman s chain code. Based on a set of particle s chincode, its size and size distribution are calculated and sorted. Finally, the experimental data ofcalcium particles and water drops, separately injected into the activation chamber, and the erroranalysis of data are given out.展开更多
The particle size distribution of polymer always develops in emulsion polymerization systems,and certain key phenomena/mechanisms as well as properties of the final product are significantly affected by this distribut...The particle size distribution of polymer always develops in emulsion polymerization systems,and certain key phenomena/mechanisms as well as properties of the final product are significantly affected by this distribution.This review mainly focuses on the measurement methods of particle size distribution rather than average particle size during the emulsion polymerization process,including the existing off-line,on-line,and in-line measurement methods.Moreover,the principle,resolution,performance,advantages,and drawbacks of various methods for evaluating particle size distribution are contrasted and illustrated.Besides,several possible development directions or solutions of the in-line measurement technology are explored.展开更多
Internal erosion occurs when fine particles escape from the soil driven by seepage flow,which is considered to be the crucial factor causing the failure of earth structures filled with gravelly soil.The objective of t...Internal erosion occurs when fine particles escape from the soil driven by seepage flow,which is considered to be the crucial factor causing the failure of earth structures filled with gravelly soil.The objective of this paper is to suggest an appropriate method to assess internal erosion potential of gravelly soil.By analyzing the sensitivity of soil material to internal erosion,the variable(Dc15/df85)max and the content of coarse particles(Pc)are selected as the evaluation indexes(Dc15 and df85 are the diameters of 15%mass passing in the coarse component and 85%mass passing in the fine component,respectively).A series of gravelly soils with different particle size distributions are tested for internal erosion by the self-made permeameter.Based on the test results,an evaluation method for the internal erosion of gravelly soil is proposed.Gravelly soil is prone to internal erosion when 60%≤Pc<95%and(Dc15/df85)max≥9.5.The proposed method shows good accuracy in evaluating the internal erosion of 36 soil samples from other studies,which confirms the reliability of the method.The proposed method makes it possible to accurately assess internal erosion of gravelly soil,and an alternative method is provided for engineers to determine whether there is a risk of internal erosion in earth structures consisting of gravelly soil.展开更多
Based on various ultrasonic loss mechanisms, the formula of the cumulative mass percentage of minerals with different particle sizes was given, with which the particle size distribution was integrated into an ultrason...Based on various ultrasonic loss mechanisms, the formula of the cumulative mass percentage of minerals with different particle sizes was given, with which the particle size distribution was integrated into an ultrasonic attenuation model. And then the correlations between the ultrasonic attenuation and the pulp density, and the particle size were obtained. The derived model was combined with the experiment and the analysis of experimental data to determine the inverse model relating ultrasonic attenuation coefficient with size distribution. Finally, an optimization method of inverse parameter, genetic algorithm was applied for particle size distribution. The results of inverse calculation show that the precision of measurement was high.展开更多
The weighted-sum-of-gray-gas(WSGG)model and Mie theory are applied to study the influents of particle size on the radiative transfer in high temperature homogeneous gas-particle mixtures,such as the flame in aero-engi...The weighted-sum-of-gray-gas(WSGG)model and Mie theory are applied to study the influents of particle size on the radiative transfer in high temperature homogeneous gas-particle mixtures,such as the flame in aero-engine combustor.The radiative transfer equation is solved by the finite volume method.The particle size is assumed to obey uniform distribution and logarithmic normal(L-N)distribution,respectively.Results reveal that when particle size obeys uniform distribution,increasing particle size with total particle volume fraction fvunchanged will result in the decreasing of the absolute value of radiative heat transfer properties,and the effect of ignoring particle scattering will also be weakened.Opposite conclusions can be obtained when total particle number concentration N0 is unchanged.Moreover,if particle size obeys L-N distribution,increasing the narrowness indexσor decreasing the characteristic diameter Dˉwith the total particle volume fraction fvunchanged will increase the absolute value of radiative heat transfer properties.With total particle number concentration N0 unchanged,opposite conclusions for radiative heat source and incident radiation terms can be obtained except for radiative heat flux term.As a whole,the effects of particle size on the radiative heat transfer in the high-temperature homogeneous gas-particle mixtures are complicated,and the particle scattering cannot be ignoring just according to the particle size.展开更多
This study selected polyaluminum chloride(PAC) coagulant to remove suspended particles in Kaolin suspension solution and used a turbidimeter and particle counter to monitor the flocculation process online and collec...This study selected polyaluminum chloride(PAC) coagulant to remove suspended particles in Kaolin suspension solution and used a turbidimeter and particle counter to monitor the flocculation process online and collected the experiment data. The experiments were conducted to study the dynamic distribution characteristics of suspended particles under different hydrodynamic conditions. The results show the self-similarity and scale invariance of particle size distribution. The study further proposed the concept of fractal dimension of particle size distribution and found out that fractal dimension changed in a similar way as residual turbidity did and could excellently indicate the variation of coagulation effect. Therefore, fractal dimension could be adopted to optimize the addition of coagulants and the quality of outflow could be further improved to reduce production costs.展开更多
The relatively poor settling characteristics of particles produced in moving bed biofilm reactor(MBBR)outline the importance of developing a fundamental understanding of the characterization and settleability of MBBR-...The relatively poor settling characteristics of particles produced in moving bed biofilm reactor(MBBR)outline the importance of developing a fundamental understanding of the characterization and settleability of MBBR-produced solids.The influence of carrier geometric properties and different levels of biofilm thickness on biofilm characteristics,solids production,particle size distribution(PSD),and particle settling velocity distribution(PSVD)is evaluated in this study.The analytical Vi CAs method is applied to the MBBR effluent to assess the distribution of particle settling velocities.This method is combined with microscopy imaging to relate particle size distribution to settling velocity.Three conventionally loaded MBBR systems are studied at a similar loading rate of 6.0 g/(m^(2)·day)and with different carrier types.The AnoxK^(TM)K5 carrier,a commonly used carrier,is compared to so-called thickness-restraint carriers,AnoxK^(TM)Z-carriers that are newly designed carriers to limit the biofilm thickness.Moreover,two levels of biofilm thickness,200μm and 400μm,are studied using AnoxK^(TM)Z-200 and Z-400 carriers.Statistical analysis confirms that K5 carriers demonstrated a significantly different biofilm mass,thickness,and density,in addition to distinct trends in PSD and PSVD in comparison with Z-carriers.However,in comparison of thickness-restraint carriers,Z-200 carrier results did not vary significantly compared to the Z-400 carrier.The K5 carriers showed the lowest production of suspended solids(0.7±0.3 gTSS/day),thickest biofilm(281.1±8.7μm)and lowest biofilm density(65.0±1.5 kg/m^(3)).The K5 effluent solids also showed enhanced settling behaviour,consisting of larger particles with faster settling velocities.展开更多
Particle size distribution(PSD) is an important parameter in the process of fluidization,and it always plays a crucial role in a gas-solid fluidized system.A PSD model for on-line PSD determination based on acoustic e...Particle size distribution(PSD) is an important parameter in the process of fluidization,and it always plays a crucial role in a gas-solid fluidized system.A PSD model for on-line PSD determination based on acoustic emission(AE) measurement was developed according to the mechanism of particle collision with the inner wall of the cylinder and multi-scale wavelet decomposition analysis.This PSD model illuminates the quantitative relationship between the energy percentage of AE signals for different scales and the PSD,which indicates the feasibility of the application of the PSD model.Experiments were undertaken both in lab and plant gas-solid fluidized setup with polyethylene particles,and the parameters of the PSD model were calibrated and revised.The experimental conditions and results proved that the PSD model was suitable for on-line measurement and was sufficiently sensible and accurate.Concerning agglomeration,the PSD model also showed exact serviceability on detecting the onset of agglomeration by abnormal PSD,and the result agreed with that from the radiation method.Ultimately,AE measurement was found to be a reliable and credible means for understanding the PSD information that affects the behavior of a system,which can provide valuable guidance for practical applications.展开更多
An intensive study of the particle size distribution of four commercial ultrafine alumina powders to obtain information about the powder agglomeration and relate them to the compactibility and the sinterability has be...An intensive study of the particle size distribution of four commercial ultrafine alumina powders to obtain information about the powder agglomeration and relate them to the compactibility and the sinterability has been made.展开更多
Deferasirox is the first-line drug for iron overload due to thalassemia in adults and pediatric patients. It is classified as a type II compound in the Biopharmaceutics Classification System, and thus the particle siz...Deferasirox is the first-line drug for iron overload due to thalassemia in adults and pediatric patients. It is classified as a type II compound in the Biopharmaceutics Classification System, and thus the particle size of its active pharmaceutical ingredient(API) should be strictly controlled during the manufacturing process. In the present study, laser diffraction was adopted to measure the particle size distribution of deferasirox API. We also developed and validated an accurate and convenient method by investigating important optical parameters and sample dispersing conditions. The relative standard deviation values, namely, d(0.1), d(0.5), d(0.9), and d(4,3), measured via methodology validation and actual sample measurement were < 3%. The dissolution curves of several batches of dispersible tablets prepared using deferasirox with different particle sizes were compared in the four dissolved media to investigate the influence of particle size on drug dissolution in vitro. Results indicated that the particle size distribution of deferasirox API significantly affected the release of its dispersible tablet.展开更多
Despite international efforts to limit worker exposure to coal dust,it continues to impact the health of thousands of miners across Europe.Airborne coal dust has been studied to improve risk models and its control to ...Despite international efforts to limit worker exposure to coal dust,it continues to impact the health of thousands of miners across Europe.Airborne coal dust has been studied to improve risk models and its control to protect workers.Particle size distribution analyses shows that using spraying systems to suppress airborne dusts can reduce particulate matter concentrations and that coals with higher ash yields produce finer dust.There are marked chemical differences between parent coals and relatively coarse deposited dusts(up to _(500)μm,DD_(500)).Enrichments in Ca,K,Ba,Se,Pb,Cr,Mo,Ni and especially As,Sn,Cu,Zn and Sb in the finest respirable dust fractions could originate from:(i)mechanical machinery wear;(ii)variations in coal mineralogy;(iii)coal fly ash used in shotcrete,and carbonates used to reduce the risk of explosions.Unusual enrichments in Ca in mine dusts are attributed to the use of such concrete,and elevated K to raised levels of phyllosilicate mineral matter.Sulphur concentrations are higher in the parent coal than in the DD_(500),probably due to relatively lower levels of organic matter.Mass concentrations of all elements observed in this study remained below occupational exposure limits.展开更多
Based on the laser diffraction and Shifrin transform,the measurement method of particle size distribution has been improved extensively.While in real measurements,some noise peaks exist in the inversion data and are e...Based on the laser diffraction and Shifrin transform,the measurement method of particle size distribution has been improved extensively.While in real measurements,some noise peaks exist in the inversion data and are easily to be misread as particle distribution peaks.The improved method used a truncation function as a filter is hard to distinguish adjacent peaks.Here,by introducing the bimodal resolution criterion,the filter function is optimized,and to a quasi truncation function with the optimized filter function is studied to achieve optimal bimodal resolution and to remove noise peaks.This new quasi truncation function fits multimode distribution very well.By combining the quasi truncation function with Shifrin transform,noise peaks are removed well and the adjacent peaks are distinguished clearly.Finally,laser diffraction experiments are conducted and the particle size distribution is analyzed by adoping the method.The results show that the quasi truncation function has better bimodal resolution than the truncation function.Generally,by combining the quasi truncation function with the Shifrin transform,in particle size distribution measurements with laser diffraction,the bimodal resolution is greatly increased and the noise is removed well.And the results can restore the original distribution perfectly.Therefore,the new method with combination of the quasi truncation function and the Shifrin transform provides a feasible and effective way to measure the multimode particle size distribution by laser diffraction.展开更多
On the basis of population balance a mathematical model is developed to describe the formation of polymer particle in styrene suspension polymerization. The characteristics of coalescence and breakage of droplets and ...On the basis of population balance a mathematical model is developed to describe the formation of polymer particle in styrene suspension polymerization. The characteristics of coalescence and breakage of droplets and the gel effect are analyzed in particular. Parameters of the models are estimated by experimental data on reaction conversion and particle size distribution. The results show that the model is suitable for predicting polymerization processes.展开更多
The Al-2.5C master alloy is prepared to investigate the effect of the Al4C3 particle size distribution on the refining efficiency of the AZ31 alloy. The results indicate that the Al4C3 particles are potent nucleation ...The Al-2.5C master alloy is prepared to investigate the effect of the Al4C3 particle size distribution on the refining efficiency of the AZ31 alloy. The results indicate that the Al4C3 particles are potent nucleation substrates for primary α-Mg grains. With 1.0 wt% master alloy addition, the grain size is reduced from 204 to 70 μm. The grain refining efficiency of the Al4C3 particles on the AZ31 alloy is calculated to be 0.04%-0.75%. Such low refining efficiency is mainly attributed to the size distribution of the Al4C3 particles. The particle sizes are in the range from 0.18 to 7.08 μm, and their distribution is well fitted by a log-normal function. The optimum particle size range for significant grain refinement is proposed to be around 5.0-7.08 μm in the present conditions.展开更多
Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast a...Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving.展开更多
Biocarbonation of reactive magnesia based on microbially induced carbonate precipitation(MICP)process is a sustainable geotechnical reinforcement technology for strength development and permeability reduction.This met...Biocarbonation of reactive magnesia based on microbially induced carbonate precipitation(MICP)process is a sustainable geotechnical reinforcement technology for strength development and permeability reduction.This method can be used to produce microbial restoration mortar(MRM)for the application of stone cultural relics restoration.In this paper,the influence of particle size distribution on the strength and porosity of MRM was examined.By mixing fine and coarse sandstone powder in various proportions,nine different particle size distributions were obtained to investigate the restoration performance,including the unconfined compressive strength(UCS),porosity,and color difference.The results indicate that the well-graded particle size distribution can lead to the UCS improvement and porosity reduction of MRM.The findings also imply that adding fine sandstone powder to the coarse sandstone powder can provide extra bridging contacts within the soil matrix.These bridging contacts can be easily connected by the precipitated hydrated magnesium carbonates(HMCs)minerals,consequently resulting in more effective bonding and filling within the pore matrix.The microstructural images of MRM confirm the formation of HMCs,which exhibited a dense network structure,filling out the gap and bonding the sandstone powders.Furthermore,the microbial restoration mortar showed a high weather resistance to dry-wet cycles,acid rain,and salt attack,which is attributed to better stability and strength of HMCs than the original calcic cemented minerals in sandstone.展开更多
The effect of particle size distribution of alumina has been investigated for silica-free tabular alumina low cement castables( LCC). Three different combinations of alumina have been included in the matrix formulat...The effect of particle size distribution of alumina has been investigated for silica-free tabular alumina low cement castables( LCC). Three different combinations of alumina have been included in the matrix formulation of the castables. All the three combinations are composed of a bimodal reactive alumina and a fine ground monomodal reactive alumina. The first A1 and second A2 combinations are respectively composed of bimodal and monomodal aluminas from Alteo,with a different fine /coarse particles ratio for the bimodal alumina. The two Alteo combinations have been compared with a third combination C composed of a bimodal commercially available grade and a monomodal commercially available grade. Optimization of particle size packing has been performed for the three different formulations using the Dinger and Funk model. With this optimization,the two formulations based on Alteo material( PFR,PBR and PFR40) achieve the same level of performance in applicative tests( flowability,cold physical properties,mechanical resistance,crystalline phases,thermal shocks and corrosion) as reference solutions on the market.展开更多
基金"PSPC Régions n°2"("Projets Structurants des Pôles de Compétitivitéen région")funded by Conseil Régional Hauts-de-France and BPI.
文摘Developing the railway transport sector is a challenging scientific,economic and social research topic starting with ensuring human security.The main topic that should be developed in that sense is the ballast stability and dynamical behaviour under external loading and environmental changes.This paper investigates the effect of particle size distribution and normal pressure on the mechanical response of a ballast bed.Grading curves of ballast layers with different sizes are illustrated to discuss their strength behaviour under various strains to deduce the significant effect on the direct shear performance of the ballast layer.Direct shear tests with different Particle Size Distribution(PSD)were reproduced using the Discrete Element Method(DEM).It is noticed that when the number of small-sized ballast increases,the shear strength and the friction angle increase to varying degrees under different normal pressures,with an average increase of 27%and 8%,respectively.When the number of large-sized ballast decreases,the shear strength and the friction angle decrease to varying degrees under different normal pressures,with an average decrease of 6%and 3%,respectively.
基金The work described in this paper was partially supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project Nos.HKU 17207518 and R5037-18).
文摘The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.
基金the National Natural Science Foundation of China (21706075)Guangzhou Municipal Science and Technology Project (202201011269)
文摘The distribution of adsorbent particle sizes typically has a significant impact on adsorption performance.Most fixed-bed adsorption studies adopt the assumption of average particle size to simplify the adsorption model,but this does not eliminate the deviation between experiments and simulations caused by particle size distribution in practice.In this study,the population balance equation(PBE)and fixed-bed adsorption kinetics model were combined to simulate the adsorption process in a fixed-bed reactor,modeling the distribution of adsorbate uptake over time on adsorbent particles of different sizes.We integrated and optimized the PBE and fixed-bed mass transfer model in the algorithm,and the resulting combined model adopts a variable time step size,which can achieve a balance between computational efficiency and error while ensuring computational convergence.By slicing the model in the spatial dimension,multiple sets of PBE can be calculated in parallel,improving computational efficiency.The adsorption process of single-component and multi-component CO_(2)/CH_(4)/N_(2)on 4A zeolite without binder was simulated,and the influence of adsorbent particle size distribution was analyzed.Simulation results show that the assumption of average adsorbent particle size,which was commonly made in published work,will underestimate the time required for adsorbates to break through the fixed bed compared with the assumption of uniform adsorbent particle size.This model helps to consider the impact of adsorbent particle size distribution on the adsorption process,thereby improving the prediction accuracy of adsorbent performance.
基金The Special Funds for State Key Projects for Fun- damental Research (G1999022201-04).
文摘Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose the suitable initial gray level threshold whichis used to change the gray level images taken by PIV to black and white ones, then every particle inan image is isolated totally. For every isolating particle, its contour is tracked by the edgeenhancement filter function and kept by Freeman s chain code. Based on a set of particle s chincode, its size and size distribution are calculated and sorted. Finally, the experimental data ofcalcium particles and water drops, separately injected into the activation chamber, and the erroranalysis of data are given out.
基金The National Key Research and Development Program(2020YFA0906804)the National Natural Science Foundation of China(22078325,22035007,91934301)+1 种基金the NSFC-EU project(31961133018)the Special Project of Strategic Leading Science and Technology,CAS(XDC06010302)are gratefully acknowledged.
文摘The particle size distribution of polymer always develops in emulsion polymerization systems,and certain key phenomena/mechanisms as well as properties of the final product are significantly affected by this distribution.This review mainly focuses on the measurement methods of particle size distribution rather than average particle size during the emulsion polymerization process,including the existing off-line,on-line,and in-line measurement methods.Moreover,the principle,resolution,performance,advantages,and drawbacks of various methods for evaluating particle size distribution are contrasted and illustrated.Besides,several possible development directions or solutions of the in-line measurement technology are explored.
基金financially supported by the National Natural Science Foundation of China(Grant No.41790432)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA20030301)。
文摘Internal erosion occurs when fine particles escape from the soil driven by seepage flow,which is considered to be the crucial factor causing the failure of earth structures filled with gravelly soil.The objective of this paper is to suggest an appropriate method to assess internal erosion potential of gravelly soil.By analyzing the sensitivity of soil material to internal erosion,the variable(Dc15/df85)max and the content of coarse particles(Pc)are selected as the evaluation indexes(Dc15 and df85 are the diameters of 15%mass passing in the coarse component and 85%mass passing in the fine component,respectively).A series of gravelly soils with different particle size distributions are tested for internal erosion by the self-made permeameter.Based on the test results,an evaluation method for the internal erosion of gravelly soil is proposed.Gravelly soil is prone to internal erosion when 60%≤Pc<95%and(Dc15/df85)max≥9.5.The proposed method shows good accuracy in evaluating the internal erosion of 36 soil samples from other studies,which confirms the reliability of the method.The proposed method makes it possible to accurately assess internal erosion of gravelly soil,and an alternative method is provided for engineers to determine whether there is a risk of internal erosion in earth structures consisting of gravelly soil.
基金Project supported by Technology Development and Research Special Foundation of National Science Research Academicand Institute , China
文摘Based on various ultrasonic loss mechanisms, the formula of the cumulative mass percentage of minerals with different particle sizes was given, with which the particle size distribution was integrated into an ultrasonic attenuation model. And then the correlations between the ultrasonic attenuation and the pulp density, and the particle size were obtained. The derived model was combined with the experiment and the analysis of experimental data to determine the inverse model relating ultrasonic attenuation coefficient with size distribution. Finally, an optimization method of inverse parameter, genetic algorithm was applied for particle size distribution. The results of inverse calculation show that the precision of measurement was high.
基金supported by the National Natural Science Foundation of China (No: 51806103)Jiangsu Provincial Natural Science Foundation(No: BK20170800)Open Funds of Aero-engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology (No. CEPE2018005)
文摘The weighted-sum-of-gray-gas(WSGG)model and Mie theory are applied to study the influents of particle size on the radiative transfer in high temperature homogeneous gas-particle mixtures,such as the flame in aero-engine combustor.The radiative transfer equation is solved by the finite volume method.The particle size is assumed to obey uniform distribution and logarithmic normal(L-N)distribution,respectively.Results reveal that when particle size obeys uniform distribution,increasing particle size with total particle volume fraction fvunchanged will result in the decreasing of the absolute value of radiative heat transfer properties,and the effect of ignoring particle scattering will also be weakened.Opposite conclusions can be obtained when total particle number concentration N0 is unchanged.Moreover,if particle size obeys L-N distribution,increasing the narrowness indexσor decreasing the characteristic diameter Dˉwith the total particle volume fraction fvunchanged will increase the absolute value of radiative heat transfer properties.With total particle number concentration N0 unchanged,opposite conclusions for radiative heat source and incident radiation terms can be obtained except for radiative heat flux term.As a whole,the effects of particle size on the radiative heat transfer in the high-temperature homogeneous gas-particle mixtures are complicated,and the particle scattering cannot be ignoring just according to the particle size.
基金The National High Technology Research and Development Program of China(863 Program) (2006AA06Z305)the National Science and Technology Project of Eleventh Five Years(2006BAJ08B05-2)Supported by the National Natural Science Foundation of China(50678047)
文摘This study selected polyaluminum chloride(PAC) coagulant to remove suspended particles in Kaolin suspension solution and used a turbidimeter and particle counter to monitor the flocculation process online and collected the experiment data. The experiments were conducted to study the dynamic distribution characteristics of suspended particles under different hydrodynamic conditions. The results show the self-similarity and scale invariance of particle size distribution. The study further proposed the concept of fractal dimension of particle size distribution and found out that fractal dimension changed in a similar way as residual turbidity did and could excellently indicate the variation of coagulation effect. Therefore, fractal dimension could be adopted to optimize the addition of coagulants and the quality of outflow could be further improved to reduce production costs.
文摘The relatively poor settling characteristics of particles produced in moving bed biofilm reactor(MBBR)outline the importance of developing a fundamental understanding of the characterization and settleability of MBBR-produced solids.The influence of carrier geometric properties and different levels of biofilm thickness on biofilm characteristics,solids production,particle size distribution(PSD),and particle settling velocity distribution(PSVD)is evaluated in this study.The analytical Vi CAs method is applied to the MBBR effluent to assess the distribution of particle settling velocities.This method is combined with microscopy imaging to relate particle size distribution to settling velocity.Three conventionally loaded MBBR systems are studied at a similar loading rate of 6.0 g/(m^(2)·day)and with different carrier types.The AnoxK^(TM)K5 carrier,a commonly used carrier,is compared to so-called thickness-restraint carriers,AnoxK^(TM)Z-carriers that are newly designed carriers to limit the biofilm thickness.Moreover,two levels of biofilm thickness,200μm and 400μm,are studied using AnoxK^(TM)Z-200 and Z-400 carriers.Statistical analysis confirms that K5 carriers demonstrated a significantly different biofilm mass,thickness,and density,in addition to distinct trends in PSD and PSVD in comparison with Z-carriers.However,in comparison of thickness-restraint carriers,Z-200 carrier results did not vary significantly compared to the Z-400 carrier.The K5 carriers showed the lowest production of suspended solids(0.7±0.3 gTSS/day),thickest biofilm(281.1±8.7μm)and lowest biofilm density(65.0±1.5 kg/m^(3)).The K5 effluent solids also showed enhanced settling behaviour,consisting of larger particles with faster settling velocities.
基金Project supported by the National Natural Science Foundation of China(Nos.21076180and20736011)the National High-Tech R&D Program(863)of China(No.2007AA04Z182)
文摘Particle size distribution(PSD) is an important parameter in the process of fluidization,and it always plays a crucial role in a gas-solid fluidized system.A PSD model for on-line PSD determination based on acoustic emission(AE) measurement was developed according to the mechanism of particle collision with the inner wall of the cylinder and multi-scale wavelet decomposition analysis.This PSD model illuminates the quantitative relationship between the energy percentage of AE signals for different scales and the PSD,which indicates the feasibility of the application of the PSD model.Experiments were undertaken both in lab and plant gas-solid fluidized setup with polyethylene particles,and the parameters of the PSD model were calibrated and revised.The experimental conditions and results proved that the PSD model was suitable for on-line measurement and was sufficiently sensible and accurate.Concerning agglomeration,the PSD model also showed exact serviceability on detecting the onset of agglomeration by abnormal PSD,and the result agreed with that from the radiation method.Ultimately,AE measurement was found to be a reliable and credible means for understanding the PSD information that affects the behavior of a system,which can provide valuable guidance for practical applications.
文摘An intensive study of the particle size distribution of four commercial ultrafine alumina powders to obtain information about the powder agglomeration and relate them to the compactibility and the sinterability has been made.
基金CAMS Innovation Fund for Medical Sciences(CIFMS No.2016-I2M-3-010 and CIFMS No.2017-I2M-1-011)。
文摘Deferasirox is the first-line drug for iron overload due to thalassemia in adults and pediatric patients. It is classified as a type II compound in the Biopharmaceutics Classification System, and thus the particle size of its active pharmaceutical ingredient(API) should be strictly controlled during the manufacturing process. In the present study, laser diffraction was adopted to measure the particle size distribution of deferasirox API. We also developed and validated an accurate and convenient method by investigating important optical parameters and sample dispersing conditions. The relative standard deviation values, namely, d(0.1), d(0.5), d(0.9), and d(4,3), measured via methodology validation and actual sample measurement were < 3%. The dissolution curves of several batches of dispersible tablets prepared using deferasirox with different particle sizes were compared in the four dissolved media to investigate the influence of particle size on drug dissolution in vitro. Results indicated that the particle size distribution of deferasirox API significantly affected the release of its dispersible tablet.
基金European Commission Research Fund for Coal and Steel(Grant Agreement Number–754205)Generalitat de Catalunya(SGR41).Centre of Excellence Severo Ochoa—Spanish Ministry of Science and Innovation(Project CEX2018-000794-S).
文摘Despite international efforts to limit worker exposure to coal dust,it continues to impact the health of thousands of miners across Europe.Airborne coal dust has been studied to improve risk models and its control to protect workers.Particle size distribution analyses shows that using spraying systems to suppress airborne dusts can reduce particulate matter concentrations and that coals with higher ash yields produce finer dust.There are marked chemical differences between parent coals and relatively coarse deposited dusts(up to _(500)μm,DD_(500)).Enrichments in Ca,K,Ba,Se,Pb,Cr,Mo,Ni and especially As,Sn,Cu,Zn and Sb in the finest respirable dust fractions could originate from:(i)mechanical machinery wear;(ii)variations in coal mineralogy;(iii)coal fly ash used in shotcrete,and carbonates used to reduce the risk of explosions.Unusual enrichments in Ca in mine dusts are attributed to the use of such concrete,and elevated K to raised levels of phyllosilicate mineral matter.Sulphur concentrations are higher in the parent coal than in the DD_(500),probably due to relatively lower levels of organic matter.Mass concentrations of all elements observed in this study remained below occupational exposure limits.
基金financially supported by the National Natural Science Foundation of China(No.51376095)the Jiangsu Province Environmental Research Projects(No.2014049)
文摘Based on the laser diffraction and Shifrin transform,the measurement method of particle size distribution has been improved extensively.While in real measurements,some noise peaks exist in the inversion data and are easily to be misread as particle distribution peaks.The improved method used a truncation function as a filter is hard to distinguish adjacent peaks.Here,by introducing the bimodal resolution criterion,the filter function is optimized,and to a quasi truncation function with the optimized filter function is studied to achieve optimal bimodal resolution and to remove noise peaks.This new quasi truncation function fits multimode distribution very well.By combining the quasi truncation function with Shifrin transform,noise peaks are removed well and the adjacent peaks are distinguished clearly.Finally,laser diffraction experiments are conducted and the particle size distribution is analyzed by adoping the method.The results show that the quasi truncation function has better bimodal resolution than the truncation function.Generally,by combining the quasi truncation function with the Shifrin transform,in particle size distribution measurements with laser diffraction,the bimodal resolution is greatly increased and the noise is removed well.And the results can restore the original distribution perfectly.Therefore,the new method with combination of the quasi truncation function and the Shifrin transform provides a feasible and effective way to measure the multimode particle size distribution by laser diffraction.
文摘On the basis of population balance a mathematical model is developed to describe the formation of polymer particle in styrene suspension polymerization. The characteristics of coalescence and breakage of droplets and the gel effect are analyzed in particular. Parameters of the models are estimated by experimental data on reaction conversion and particle size distribution. The results show that the model is suitable for predicting polymerization processes.
基金supported by the National Key Research and Development Program of China(No.2016YFB0701204)the project(DUT15JJ(G)01)supported by the Fundamental Research Funds for the Central Universities
文摘The Al-2.5C master alloy is prepared to investigate the effect of the Al4C3 particle size distribution on the refining efficiency of the AZ31 alloy. The results indicate that the Al4C3 particles are potent nucleation substrates for primary α-Mg grains. With 1.0 wt% master alloy addition, the grain size is reduced from 204 to 70 μm. The grain refining efficiency of the Al4C3 particles on the AZ31 alloy is calculated to be 0.04%-0.75%. Such low refining efficiency is mainly attributed to the size distribution of the Al4C3 particles. The particle sizes are in the range from 0.18 to 7.08 μm, and their distribution is well fitted by a log-normal function. The optimum particle size range for significant grain refinement is proposed to be around 5.0-7.08 μm in the present conditions.
基金Indian Institute of Technology,Kharagpur in India for supporting this work
文摘Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving.
基金supported by Chongqing Research Institute Performance Incentive and Guidance Project(Grant No.cstc2021jxjl00028)Entrepreneurship and Innovation Support for Overseas Student,Chongqing,China(Grant No.CX2022007)Chongqing Municipal Special Project for Technological Innovation and Development Application(Grant No.JG2021072).
文摘Biocarbonation of reactive magnesia based on microbially induced carbonate precipitation(MICP)process is a sustainable geotechnical reinforcement technology for strength development and permeability reduction.This method can be used to produce microbial restoration mortar(MRM)for the application of stone cultural relics restoration.In this paper,the influence of particle size distribution on the strength and porosity of MRM was examined.By mixing fine and coarse sandstone powder in various proportions,nine different particle size distributions were obtained to investigate the restoration performance,including the unconfined compressive strength(UCS),porosity,and color difference.The results indicate that the well-graded particle size distribution can lead to the UCS improvement and porosity reduction of MRM.The findings also imply that adding fine sandstone powder to the coarse sandstone powder can provide extra bridging contacts within the soil matrix.These bridging contacts can be easily connected by the precipitated hydrated magnesium carbonates(HMCs)minerals,consequently resulting in more effective bonding and filling within the pore matrix.The microstructural images of MRM confirm the formation of HMCs,which exhibited a dense network structure,filling out the gap and bonding the sandstone powders.Furthermore,the microbial restoration mortar showed a high weather resistance to dry-wet cycles,acid rain,and salt attack,which is attributed to better stability and strength of HMCs than the original calcic cemented minerals in sandstone.
文摘The effect of particle size distribution of alumina has been investigated for silica-free tabular alumina low cement castables( LCC). Three different combinations of alumina have been included in the matrix formulation of the castables. All the three combinations are composed of a bimodal reactive alumina and a fine ground monomodal reactive alumina. The first A1 and second A2 combinations are respectively composed of bimodal and monomodal aluminas from Alteo,with a different fine /coarse particles ratio for the bimodal alumina. The two Alteo combinations have been compared with a third combination C composed of a bimodal commercially available grade and a monomodal commercially available grade. Optimization of particle size packing has been performed for the three different formulations using the Dinger and Funk model. With this optimization,the two formulations based on Alteo material( PFR,PBR and PFR40) achieve the same level of performance in applicative tests( flowability,cold physical properties,mechanical resistance,crystalline phases,thermal shocks and corrosion) as reference solutions on the market.