A spatially adaptive (SA) two-dimensional (2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set (MPLS) method is proposed to solve the problem of interfac...A spatially adaptive (SA) two-dimensional (2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set (MPLS) method is proposed to solve the problem of interface tracking,in which common intersection may be traversed by multiple interfaces.By using the adaptive mesh technique and the MPLS method,mesh resolution is updated automatically with time according to flow characteristics in the modeling process with higher resolution around the free surface and the solid boundary and lower resolution in less important area.The model has good performance in saving computer memory and CPU time and is validated by computational examples of small amplitude wave,second-order Stokes wave and cnoidal wave.Computational results also indicate that standing wave and wave overtopping are also reasonably simulated by the model.展开更多
The technique of adaptive tree mesh is an effective way to reduce computational cost through automatic adjustment of cell size according to necessity. In the present study, the 2D numerical N-S solver based on the ada...The technique of adaptive tree mesh is an effective way to reduce computational cost through automatic adjustment of cell size according to necessity. In the present study, the 2D numerical N-S solver based on the adaptive quadtree mesh system was extended to a 3D one, in which a spatially adaptive oetree mesh system and multiple particle level set method were adopted for the convenience to deal with the air-water-structure multiple-medium coexisting domain. The stretching process of a dumbbell was simulated and the results indicate that the meshes are well adaptable to the free surface. The collapsing process of water column impinging a circle cylinder was simulated and from the results, it can be seen that the processes of fluid splitting and merging are properly simulated. The interaction of second-order Stokes waves with a square cylinder was simulated and the obtained drag force is consistent with the result by the Morison's wave force formula with the coefficient values of the stable drag component and the inertial force component bein~ set as 2.54.展开更多
With the intermediate flow states predicted by local two phase Riemann problem,the modified ghost fluid method(MGFM)and its variant(r GFM)have been widely employed to resolve the interface condition in the simulation ...With the intermediate flow states predicted by local two phase Riemann problem,the modified ghost fluid method(MGFM)and its variant(r GFM)have been widely employed to resolve the interface condition in the simulation of compressible multi-medium flows.In this work,the drawback of the construction procedure of local two phase Riemann problem in r GFM was investigated in detail,and a refined version of the construction procedure was specially developed to make the simulation of underwater explosion bubbles more accurate and robust.Beside the refined r GFM,the fast and accurate particle level set method was also adopted to achieve a more effective and computationally efficient capture of the evolving multi-medium interfaces during the simulation.To demonstrate the improvement brought by current refinement,several typical numerical examples of underwater explosion bubbles were performed with original r GFM and refined r GFM,respectively.The results indicate that,when compared with original r GFM,numerical oscillations were effectively removed with the proposed refinement.Accordingly,with present refined treatment of interface condition,a more accurate and robust simulation of underwater explosion bubbles was accomplished in this work.展开更多
In this paper, we give an up-to-date survey on physically-based fluid animation research. As one of the most popular approaches to simulate realistic fluid effects, physically-based fluid animation has spurred a large...In this paper, we give an up-to-date survey on physically-based fluid animation research. As one of the most popular approaches to simulate realistic fluid effects, physically-based fluid animation has spurred a large number of new results in recent years. We classify and discuss the existing methods within three categories: Lagrangian method, Eulerian method and Lattice-Boltzmann method. We then introduce techniques for seven different kinds of special fluid effects. Finally we review the latest hot research areas and point out some future research trends, including surface tracking, fluid control, hybrid method, model reduction, etc.展开更多
基金The Innovative Research Groups of the National Natural Science Foundation of China under contract No.51021004the National Natural Science Foundation for Youth of China under contract No. 51109018+2 种基金the Open Foundation of Water & Sediment Science and Water Hazard Prevention Hunan Provincial Key Laboratory under contract No. 2011SS05the Open Foundation of Port,Coastal and offshore Engineering Hunan Provincial Key Discipline under contract No. 20110815001the Open Foundation of State Key Laboratory of Hydraulic Engineering Simulation and Safety under contract No.HSSKLTJU-201208.
文摘A spatially adaptive (SA) two-dimensional (2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set (MPLS) method is proposed to solve the problem of interface tracking,in which common intersection may be traversed by multiple interfaces.By using the adaptive mesh technique and the MPLS method,mesh resolution is updated automatically with time according to flow characteristics in the modeling process with higher resolution around the free surface and the solid boundary and lower resolution in less important area.The model has good performance in saving computer memory and CPU time and is validated by computational examples of small amplitude wave,second-order Stokes wave and cnoidal wave.Computational results also indicate that standing wave and wave overtopping are also reasonably simulated by the model.
基金Supported by the National Natural Science Foundation of China(No.51379143 and No.51109018)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.51021004)+1 种基金the Open Foundation of Key Laboratory of Water-Sediment Science and Water Disaster Prevention of Hunan Province(No.2014SS01)the Open Foundation of State Key Laboratory of Hydraulic Engineering Simulation and Safety(No.HSSKLTJU-201208)
文摘The technique of adaptive tree mesh is an effective way to reduce computational cost through automatic adjustment of cell size according to necessity. In the present study, the 2D numerical N-S solver based on the adaptive quadtree mesh system was extended to a 3D one, in which a spatially adaptive oetree mesh system and multiple particle level set method were adopted for the convenience to deal with the air-water-structure multiple-medium coexisting domain. The stretching process of a dumbbell was simulated and the results indicate that the meshes are well adaptable to the free surface. The collapsing process of water column impinging a circle cylinder was simulated and from the results, it can be seen that the processes of fluid splitting and merging are properly simulated. The interaction of second-order Stokes waves with a square cylinder was simulated and the obtained drag force is consistent with the result by the Morison's wave force formula with the coefficient values of the stable drag component and the inertial force component bein~ set as 2.54.
基金supported by the National Natural Science Foundation of China(Grant Nos.041322062 and 51075004)the Foundation of Zhejiang Educational Committee(Grant No.529003+G21144)
文摘With the intermediate flow states predicted by local two phase Riemann problem,the modified ghost fluid method(MGFM)and its variant(r GFM)have been widely employed to resolve the interface condition in the simulation of compressible multi-medium flows.In this work,the drawback of the construction procedure of local two phase Riemann problem in r GFM was investigated in detail,and a refined version of the construction procedure was specially developed to make the simulation of underwater explosion bubbles more accurate and robust.Beside the refined r GFM,the fast and accurate particle level set method was also adopted to achieve a more effective and computationally efficient capture of the evolving multi-medium interfaces during the simulation.To demonstrate the improvement brought by current refinement,several typical numerical examples of underwater explosion bubbles were performed with original r GFM and refined r GFM,respectively.The results indicate that,when compared with original r GFM,numerical oscillations were effectively removed with the proposed refinement.Accordingly,with present refined treatment of interface condition,a more accurate and robust simulation of underwater explosion bubbles was accomplished in this work.
基金Supported partially by the National Basic Research Program of China (Grant No. 2009CB320804)the National High-Tech Research & Development Program of China (Grant No. 2006AA01Z307)
文摘In this paper, we give an up-to-date survey on physically-based fluid animation research. As one of the most popular approaches to simulate realistic fluid effects, physically-based fluid animation has spurred a large number of new results in recent years. We classify and discuss the existing methods within three categories: Lagrangian method, Eulerian method and Lattice-Boltzmann method. We then introduce techniques for seven different kinds of special fluid effects. Finally we review the latest hot research areas and point out some future research trends, including surface tracking, fluid control, hybrid method, model reduction, etc.