Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression mo...Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method.展开更多
The reliability theory has been an important element of the classical geodetic adjustment theory and methods in the linear Gauss-Markov model. Although errors-in-variables(EIV) models have been intensively investigate...The reliability theory has been an important element of the classical geodetic adjustment theory and methods in the linear Gauss-Markov model. Although errors-in-variables(EIV) models have been intensively investigated, little has been done about reliability theory for EIV models. This paper first investigates the effect of a random coefficient matrix A on the conventional geodetic reliability measures as if the coefficient matrix were deterministic. The effects of such geodetic internal and external reliability measures due to the randomness of the coefficient matrix are worked out, which are shown to depend not only on the noise level of the random elements of A but also on the values of parameters. An alternative, linear approximate reliability theory is accordingly developed for use in EIV models. Both the EIV-affected reliability measures and the corresponding linear approximate measures fully account for the random errors of both the coefficient matrix and the observations, though formulated in a slightly different way. Numerical experiments have been carried to demonstrate the effects of errors-in-variables on reliability measures and compared with the conventional Baarda's reliability measures. The simulations have confirmed our theoretical results that the EIV-reliability measures depend on both the noise level of A and the parameter values. The larger the noise level of A, the larger the EIV-affected internal and external reliability measures;the larger the parameters,the larger the EIV-affected internal and external reliability measures.展开更多
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational...Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.展开更多
Objective:To highlight the role of hyper accuracy three-dimensional(3D)reconstruction in facilitating surgical planning and guiding selective clamping during robot-assisted partial nephrectomy(RAPN).Methods:A transper...Objective:To highlight the role of hyper accuracy three-dimensional(3D)reconstruction in facilitating surgical planning and guiding selective clamping during robot-assisted partial nephrectomy(RAPN).Methods:A transperitoneal RAPN was performed in a 62-year-old male patient presenting with a 4 cm right anterior interpolar renal mass(R.E.N.A.L nephrometry score 7A).An abnormal vasculature was observed,with a single renal vein and two right renal arteries originating superiorly to the vein and anterior,when dividing in their segmental branches.According to the hyper accuracy 3D(HA3D^(®))rainbow model(MEDICS Srl,Turin,Italy),one branch belonging to one of the segmental arteries was feeding the tumor.This allowed for an accurate prediction of the area vascularized by each arterial branch.The 3D model was included in the intraoperative console view during the whole procedure,using the TilePro feature.A step-by-step explanation of the procedure is provided in the video attached to the present article.Results:The operative time was 90 min with a warm ischemia time on selective clamping of 13 min.Estimated blood loss was 180 mL.No intraoperative complication was encountered and no drain was placed at the end of the procedure.The patient was discharged on postoperative Day 2,without any early postoperative complications.The final pathology report showed a pathological tumor stage 1 clear cell renal cell carcinoma with negative surgical margins.Conclusion:The present study and the attached video illustrate the value of 3D rainbow model during the planning and execution of a RAPN with selective clamping.It shows how the surgeon can rely on this model to be more efficient by avoiding unnecessary surgical steps,and to safely adopt a“selective”clamping strategy that can translate in minimal functional impact.展开更多
Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe...Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.展开更多
The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises i...The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises in the inputs of the system and generates an under-estimation of the true FRF. The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation. The FRF estimator based on the EV model is applied to the waveform replication on the 6-DOF (degree-of-freedom) hydraulic vibration table. The result shows that it is favorable to improve the control precision of the MIMO vibration control system.展开更多
This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration s...This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration stability in cargo transportation.The LD-ASF is further optimized for payload transportation efficiency by a novel coordinate game theory to balance competing control objectives among payload transport speed,stable end body's libration,and overall control input via model predictive control.The transfer period is divided into several sections to reduce computational burden.The validity and efficacy of the proposed LD-ASF and coordinate game-based model predictive control are demonstrated by computer simulation.Numerical results reveal that the optimized LD-ASF results in higher transportation speed,stable end body's libration,lower thrust fuel consumption,and more flexible optimization space than the classic analytical speed function.展开更多
Partial cooperation models are studied for many years to solve the bilevel programming problems where the follower’s optimal reaction is not unique. However, in these existed models, the follower’s cooperation level...Partial cooperation models are studied for many years to solve the bilevel programming problems where the follower’s optimal reaction is not unique. However, in these existed models, the follower’s cooperation level does not depend on the leader’s decision. A new model is proposed to solve this deficiency. It is proved the feasibility of the new model when the reaction set of the lower level is lower semicontinuous. And the numerical results show that the new model has optimal solutions when the reaction set of the lower level is discrete, lower semi-continuous and non-lower semi-continuous.展开更多
In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be est...In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be estimated simultaneously by the proposed method while the feature of longitudinal data is considered. The existence, strong consistency and asymptotic normality of the estimators are proved under suitable conditions. A simulation study is conducted to investigate the finite sample performance of the proposed method. Our approach can also be used to study the pure single-index model for longitudinal data.展开更多
This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author als...This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author also found that the estimators show remarkable in the small sample case yet.展开更多
A multi-loop adaptive internal model control (IMC) strategy based on a dynamic partial least squares (PLS) frame-work is proposed to account for plant model errors caused by slow aging,drift in operational conditions,...A multi-loop adaptive internal model control (IMC) strategy based on a dynamic partial least squares (PLS) frame-work is proposed to account for plant model errors caused by slow aging,drift in operational conditions,or environmental changes.Since PLS decomposition structure enables multi-loop controller design within latent spaces,a multivariable adaptive control scheme can be converted easily into several independent univariable control loops in the PLS space.In each latent subspace,once the model error exceeds a specific threshold,online adaptation rules are implemented separately to correct the plant model mismatch via a recursive least squares (RLS) algorithm.Because the IMC extracts the inverse of the minimum part of the internal model as its structure,the IMC controller is self-tuned by explicitly updating the parameters,which are parts of the internal model.Both parameter convergence and system stability are briefly analyzed,and proved to be effective.Finally,the proposed control scheme is tested and evaluated using a widely-used benchmark of a multi-input multi-output (MIMO) system with pure delay.展开更多
Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobse...Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobserved error. In Ref[1,2], it wes proved that the estimator for the asymptotic variance of βn(βn) is consistent. In this paper, we establish the limit distribution and the law of the iterated logarithm for,En, and obtain the convergest rates for En and the strong uniform convergent rates for gn(gn).展开更多
Consider the semiparametric varying-coefficient heteroscedastic partially linear model Yi = X^T i β+ Z^T iα(Ti) + σiei, 1 ≤ i≤ n, where σ ^2i= f(Ui), β is a p × 1 column vector of unknown parameter, ...Consider the semiparametric varying-coefficient heteroscedastic partially linear model Yi = X^T i β+ Z^T iα(Ti) + σiei, 1 ≤ i≤ n, where σ ^2i= f(Ui), β is a p × 1 column vector of unknown parameter, (Xi, Zi, Ti, Ui) are random design q-dimensional vector of unknown functions, el points, Yi are the response variables, α(-) is a are random errors. For both cases that f(.) is known and unknown, we propose the empirical log-likelihood ratio statistics for the parameter f(.). For each case, a nonparametric version of Wilks' theorem is derived. The results are then used to construct confidence regions of the parameter. Simulation studies are carried out to assess the performance of the empirical likelihood method.展开更多
When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To ...When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To solve this problem,we propose to add the nonparametric part(systematic errors)to the partial EIV model,and build the partial EIV model to weaken the influence of systematic errors.Then,having rewritten the model as a nonlinear model,we derive the formula of parameter estimations based on the penalized total least squares criterion.Furthermore,based on the second-order approximation method of precision estimation,we derive the second-order bias and covariance of parameter estimations and calculate the mean square error(MSE).Aiming at the selection of the smoothing factor,we propose to use the U curve method.The experiments show that the proposed method can mitigate the influence of systematic errors to a certain extent compared with the traditional method and get more reliable parameter estimations and its precision information,which validates the feasibility and effectiveness of the proposed method.展开更多
On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- s...On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- semiconductor field effect transistors is developed. An exponential approximation is proposed to simplify the trap charge calculation. Irradiation experiments with 60Co gamma rays for IO and core devices are performed to validate the simulation results. An excellent agreement of measurement with the simulation results is observed.展开更多
AIM: To establish a new pig model for auxiliary partial orthotopic liver transplantation (APOLT).METHODS: The liver of the donor was removed from its body. The left lobe of the liver was resected in vivo and the right...AIM: To establish a new pig model for auxiliary partial orthotopic liver transplantation (APOLT).METHODS: The liver of the donor was removed from its body. The left lobe of the liver was resected in vivo and the right lobe was used as a graft. After the left lateral lobe of the recipient was resected, end-to-side anastomoses of suprahepatic inferior vena cava and portal vein were performed between the donor and recipient livers,respectively. End-to-end anastomoses were made between hepatic artery of graft and splenic artery of the host.Outside drainage was placed in donor common bile duct.RESULTS: Models of APOLT were established in 5 pigs with a success rate of 80%. Color ultrasound examination showed an increase of blood flow of graft on 5th d compared to the first day after operation. When animals were killed on the 5th d after operation, thrombosis of hepatic vein (HV) and portal vein (PV) were not found. Histopathological examination of liver samples revealed evidence of damage with mild steatosis and sporadic necrotic hepatocytes and focal hepatic lobules structure disorganized in graft. Infiltration of inflammatory cells was mild in portal or central vein area. Hematologic laboratory values and blood chemical findings revealed that compared with group A (before transplantation), mean arterial pressure (MAP), central venous pressure (CVP), buffer base (BB), standard bicarbonate (SB) and K+ in group B (after portal vein was clamped) decreased (P<0.01). After reperfusion of the graft, MAP, CVP and K+ restored gradually.CONCLUSION: Significant decrease of congestion in portal vein and shortened blocking time were obtained because of the application of in vitro veno-venous bypass during complete vascular clamping. This new procedure,with such advantages as simple vessel processing, quality anastomosis, less postoperative hemorrhage and higher success rate, effectively prevents ischemia reperfusion injury of the host liver and deserves to be spread.展开更多
We present and discuss the partial oscillation with respect to equilibrium state ofm-dimensional Logistic delay ecologic models, and obtain some simple criteria.
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) prop...This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.展开更多
In this paper, we consider the variable selection for the parametric components of varying coefficient partially linear models with censored data. By constructing a penalized auxiliary vector ingeniously, we propose a...In this paper, we consider the variable selection for the parametric components of varying coefficient partially linear models with censored data. By constructing a penalized auxiliary vector ingeniously, we propose an empirical likelihood based variable selection procedure, and show that it is consistent and satisfies the sparsity. The simulation studies show that the proposed variable selection method is workable.展开更多
Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the est...Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3).展开更多
基金supported by the National Security Major Basic Research Project of China (973-61334).
文摘Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China, Project No. 42174045under National Key Research and Development Program of China, Project No.2020YFB0505805the National Natural Science Foundation of China, Project No. 41874012。
文摘The reliability theory has been an important element of the classical geodetic adjustment theory and methods in the linear Gauss-Markov model. Although errors-in-variables(EIV) models have been intensively investigated, little has been done about reliability theory for EIV models. This paper first investigates the effect of a random coefficient matrix A on the conventional geodetic reliability measures as if the coefficient matrix were deterministic. The effects of such geodetic internal and external reliability measures due to the randomness of the coefficient matrix are worked out, which are shown to depend not only on the noise level of the random elements of A but also on the values of parameters. An alternative, linear approximate reliability theory is accordingly developed for use in EIV models. Both the EIV-affected reliability measures and the corresponding linear approximate measures fully account for the random errors of both the coefficient matrix and the observations, though formulated in a slightly different way. Numerical experiments have been carried to demonstrate the effects of errors-in-variables on reliability measures and compared with the conventional Baarda's reliability measures. The simulations have confirmed our theoretical results that the EIV-reliability measures depend on both the noise level of A and the parameter values. The larger the noise level of A, the larger the EIV-affected internal and external reliability measures;the larger the parameters,the larger the EIV-affected internal and external reliability measures.
基金supported by the National Key R&D Program of China under Grant No.2021ZD0110400.
文摘Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.
文摘Objective:To highlight the role of hyper accuracy three-dimensional(3D)reconstruction in facilitating surgical planning and guiding selective clamping during robot-assisted partial nephrectomy(RAPN).Methods:A transperitoneal RAPN was performed in a 62-year-old male patient presenting with a 4 cm right anterior interpolar renal mass(R.E.N.A.L nephrometry score 7A).An abnormal vasculature was observed,with a single renal vein and two right renal arteries originating superiorly to the vein and anterior,when dividing in their segmental branches.According to the hyper accuracy 3D(HA3D^(®))rainbow model(MEDICS Srl,Turin,Italy),one branch belonging to one of the segmental arteries was feeding the tumor.This allowed for an accurate prediction of the area vascularized by each arterial branch.The 3D model was included in the intraoperative console view during the whole procedure,using the TilePro feature.A step-by-step explanation of the procedure is provided in the video attached to the present article.Results:The operative time was 90 min with a warm ischemia time on selective clamping of 13 min.Estimated blood loss was 180 mL.No intraoperative complication was encountered and no drain was placed at the end of the procedure.The patient was discharged on postoperative Day 2,without any early postoperative complications.The final pathology report showed a pathological tumor stage 1 clear cell renal cell carcinoma with negative surgical margins.Conclusion:The present study and the attached video illustrate the value of 3D rainbow model during the planning and execution of a RAPN with selective clamping.It shows how the surgeon can rely on this model to be more efficient by avoiding unnecessary surgical steps,and to safely adopt a“selective”clamping strategy that can translate in minimal functional impact.
基金Supported by the Key Laboratory Fund for Equipment Pre-Research(6142207210202)。
文摘Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.
基金This project is supported by Program for New Century Excellent Talents in University,China(No.NCET-04-0325).
文摘The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises in the inputs of the system and generates an under-estimation of the true FRF. The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation. The FRF estimator based on the EV model is applied to the waveform replication on the 6-DOF (degree-of-freedom) hydraulic vibration table. The result shows that it is favorable to improve the control precision of the MIMO vibration control system.
基金funded by the National Natural Science Foundation of China(12102487)Basic and Applied Basic Research Foundation of Guangdong Province,China(2023A1515012339)+1 种基金Shenzhen Science and Technology Program(ZDSYS20210623091808026)the Discovery Grant(RGPIN-2024-06290)of the Natural Sciences and Engineering Research Council of Canada。
文摘This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration stability in cargo transportation.The LD-ASF is further optimized for payload transportation efficiency by a novel coordinate game theory to balance competing control objectives among payload transport speed,stable end body's libration,and overall control input via model predictive control.The transfer period is divided into several sections to reduce computational burden.The validity and efficacy of the proposed LD-ASF and coordinate game-based model predictive control are demonstrated by computer simulation.Numerical results reveal that the optimized LD-ASF results in higher transportation speed,stable end body's libration,lower thrust fuel consumption,and more flexible optimization space than the classic analytical speed function.
基金supported by the National Natural Science Foundationof China (70771080)the National Science Foundation of Hubei Province(20091107)Hubei Province Key Laboratory of Systems Science in Metallurgical Process (B201003)
文摘Partial cooperation models are studied for many years to solve the bilevel programming problems where the follower’s optimal reaction is not unique. However, in these existed models, the follower’s cooperation level does not depend on the leader’s decision. A new model is proposed to solve this deficiency. It is proved the feasibility of the new model when the reaction set of the lower level is lower semicontinuous. And the numerical results show that the new model has optimal solutions when the reaction set of the lower level is discrete, lower semi-continuous and non-lower semi-continuous.
基金Supported by the National Natural Science Foundation of China (10571008)the Natural Science Foundation of Henan (092300410149)the Core Teacher Foundationof Henan (2006141)
文摘In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be estimated simultaneously by the proposed method while the feature of longitudinal data is considered. The existence, strong consistency and asymptotic normality of the estimators are proved under suitable conditions. A simulation study is conducted to investigate the finite sample performance of the proposed method. Our approach can also be used to study the pure single-index model for longitudinal data.
文摘This paper considers the local linear regression estimators for partially linear model with censored data. Which have some nice large-sample behaviors and are easy to implement. By many simulation runs, the author also found that the estimators show remarkable in the small sample case yet.
基金Project supported by the National Natural Science Foundation of China (No.60574047)the National High-Tech R & D Program (863)of China (No.2007AA04Z168)the Research Fund for the Doctoral Program of Higher Education of China (No.20050335018)
文摘A multi-loop adaptive internal model control (IMC) strategy based on a dynamic partial least squares (PLS) frame-work is proposed to account for plant model errors caused by slow aging,drift in operational conditions,or environmental changes.Since PLS decomposition structure enables multi-loop controller design within latent spaces,a multivariable adaptive control scheme can be converted easily into several independent univariable control loops in the PLS space.In each latent subspace,once the model error exceeds a specific threshold,online adaptation rules are implemented separately to correct the plant model mismatch via a recursive least squares (RLS) algorithm.Because the IMC extracts the inverse of the minimum part of the internal model as its structure,the IMC controller is self-tuned by explicitly updating the parameters,which are parts of the internal model.Both parameter convergence and system stability are briefly analyzed,and proved to be effective.Finally,the proposed control scheme is tested and evaluated using a widely-used benchmark of a multi-input multi-output (MIMO) system with pure delay.
文摘Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobserved error. In Ref[1,2], it wes proved that the estimator for the asymptotic variance of βn(βn) is consistent. In this paper, we establish the limit distribution and the law of the iterated logarithm for,En, and obtain the convergest rates for En and the strong uniform convergent rates for gn(gn).
基金Supported by the National Natural Science Foundation of China (Grant No. 71171003)Natural Science Research Project of Anhui Provincial Colleges (Grant No. KJ2011A032)+3 种基金Anhui Polytechnic University Foundation for Recruiting Talent (Grant Nos. 2011YQQ0042009YQQ005)Young Teachers Science Research Foundation of Anhui Polytechnic University (Grant No. 2009YQ035)Anhui Provincial Natural Science Foundation
文摘Consider the semiparametric varying-coefficient heteroscedastic partially linear model Yi = X^T i β+ Z^T iα(Ti) + σiei, 1 ≤ i≤ n, where σ ^2i= f(Ui), β is a p × 1 column vector of unknown parameter, (Xi, Zi, Ti, Ui) are random design q-dimensional vector of unknown functions, el points, Yi are the response variables, α(-) is a are random errors. For both cases that f(.) is known and unknown, we propose the empirical log-likelihood ratio statistics for the parameter f(.). For each case, a nonparametric version of Wilks' theorem is derived. The results are then used to construct confidence regions of the parameter. Simulation studies are carried out to assess the performance of the empirical likelihood method.
基金supported by the National Natural Science Foundation of China,Nos.41874001 and 41664001Support Program for Outstanding Youth Talents in Jiangxi Province,No.20162BCB23050National Key Research and Development Program,No.2016YFB0501405。
文摘When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To solve this problem,we propose to add the nonparametric part(systematic errors)to the partial EIV model,and build the partial EIV model to weaken the influence of systematic errors.Then,having rewritten the model as a nonlinear model,we derive the formula of parameter estimations based on the penalized total least squares criterion.Furthermore,based on the second-order approximation method of precision estimation,we derive the second-order bias and covariance of parameter estimations and calculate the mean square error(MSE).Aiming at the selection of the smoothing factor,we propose to use the U curve method.The experiments show that the proposed method can mitigate the influence of systematic errors to a certain extent compared with the traditional method and get more reliable parameter estimations and its precision information,which validates the feasibility and effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61404151 and 61574153
文摘On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- semiconductor field effect transistors is developed. An exponential approximation is proposed to simplify the trap charge calculation. Irradiation experiments with 60Co gamma rays for IO and core devices are performed to validate the simulation results. An excellent agreement of measurement with the simulation results is observed.
文摘AIM: To establish a new pig model for auxiliary partial orthotopic liver transplantation (APOLT).METHODS: The liver of the donor was removed from its body. The left lobe of the liver was resected in vivo and the right lobe was used as a graft. After the left lateral lobe of the recipient was resected, end-to-side anastomoses of suprahepatic inferior vena cava and portal vein were performed between the donor and recipient livers,respectively. End-to-end anastomoses were made between hepatic artery of graft and splenic artery of the host.Outside drainage was placed in donor common bile duct.RESULTS: Models of APOLT were established in 5 pigs with a success rate of 80%. Color ultrasound examination showed an increase of blood flow of graft on 5th d compared to the first day after operation. When animals were killed on the 5th d after operation, thrombosis of hepatic vein (HV) and portal vein (PV) were not found. Histopathological examination of liver samples revealed evidence of damage with mild steatosis and sporadic necrotic hepatocytes and focal hepatic lobules structure disorganized in graft. Infiltration of inflammatory cells was mild in portal or central vein area. Hematologic laboratory values and blood chemical findings revealed that compared with group A (before transplantation), mean arterial pressure (MAP), central venous pressure (CVP), buffer base (BB), standard bicarbonate (SB) and K+ in group B (after portal vein was clamped) decreased (P<0.01). After reperfusion of the graft, MAP, CVP and K+ restored gradually.CONCLUSION: Significant decrease of congestion in portal vein and shortened blocking time were obtained because of the application of in vitro veno-venous bypass during complete vascular clamping. This new procedure,with such advantages as simple vessel processing, quality anastomosis, less postoperative hemorrhage and higher success rate, effectively prevents ischemia reperfusion injury of the host liver and deserves to be spread.
文摘We present and discuss the partial oscillation with respect to equilibrium state ofm-dimensional Logistic delay ecologic models, and obtain some simple criteria.
基金supported by the National Natural Science Funds for Distinguished Young Scholar (70825004)National Natural Science Foundation of China (NSFC) (10731010 and 10628104)+3 种基金the National Basic Research Program (2007CB814902)Creative Research Groups of China (10721101)Leading Academic Discipline Program, the 10th five year plan of 211 Project for Shanghai University of Finance and Economics211 Project for Shanghai University of Financeand Economics (the 3rd phase)
文摘This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1110111911126332)+2 种基金the National Social Science Foundation of China(Grant No.11CTJ004)the Natural Science Foundation of Guangxi Province(Grant No.2010GXNSFB013051)the Philosophy and Social Sciences Foundation of Guangxi Province(Grant No.11FTJ002)
文摘In this paper, we consider the variable selection for the parametric components of varying coefficient partially linear models with censored data. By constructing a penalized auxiliary vector ingeniously, we propose an empirical likelihood based variable selection procedure, and show that it is consistent and satisfies the sparsity. The simulation studies show that the proposed variable selection method is workable.
文摘Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3).