Parkinsons disease(PD)is a chronic,progressive neurodegenerative disorder characterized by both motor and non-motor symptoms.Pain,a key component of PDs non-motor symptoms,was first documented by Charcot in 1872 as a ...Parkinsons disease(PD)is a chronic,progressive neurodegenerative disorder characterized by both motor and non-motor symptoms.Pain,a key component of PDs non-motor symptoms,was first documented by Charcot in 1872 as a potential correlate of the disease.While pharmacological and surgical interventions have gained traction in managing PD-related pain,the therapeutic framework remains inconsistent.Understanding the pathogenesis and contributing factors of PD pain is crucial for developing novel therapies and refining disease identification and treatment protocols.This review examines the potential mechanisms and influencing factors of PD-associated pain,with the aim of identifying new therapeutic targets for PD pain.展开更多
Alpha-synuclein and Parkinson's disease:Neuronal damage and inflammation caused by the aggregation of alpha-synuclein(α-syn)are central to a group of disorders known as synucleopathies,which includes Parkinson...Alpha-synuclein and Parkinson's disease:Neuronal damage and inflammation caused by the aggregation of alpha-synuclein(α-syn)are central to a group of disorders known as synucleopathies,which includes Parkinson's disease(PD),dementia with Lewy bodies,and multiple system atrophy,among others.PD,the most common synucleinopathy,is the second most prevalent neurodegenerative disease after Alzheimer's disease,and it is the fastest growing.Its primary hallmark is the degeneration of dopaminergic neurons in the substantia nigra pars compacta,disrupting the communication with the striatum.展开更多
Parkinson's disease(PD)is the second most common neurodegenerative disorder.The clinical manifestations of PD include motor symptoms,such as bradykinesia,resting tremor,rigidity,and nonmotor symptoms,which include...Parkinson's disease(PD)is the second most common neurodegenerative disorder.The clinical manifestations of PD include motor symptoms,such as bradykinesia,resting tremor,rigidity,and nonmotor symptoms,which include disturbances in sleep,gastrointestinal function,and olfaction.PD misdiagnosis rates have been reported to reach approximately 30%,partly owing to the heterogeneity of parkinsonism with non-PD pathologies,and the differential diagnosis of PD from neurodegenerative diseases such as multiple systemic atrophy(MSA)and progressive supranuclear palsy poses another unmet need.展开更多
Parkinson’s disease(PD)is the second most common neurodegenerative disorder.The progressive degeneration of dopamine(DA)producing neurons in the midbrain is the pathological hallmark,which leads to debilitating motor...Parkinson’s disease(PD)is the second most common neurodegenerative disorder.The progressive degeneration of dopamine(DA)producing neurons in the midbrain is the pathological hallmark,which leads to debilitating motor symptoms,including tremors,rigidity,and bradykinesia.Drug treatments,such as levodopa,provide symptomatic relief.However,they do not halt disease progression,and their effectiveness diminishes over time(reviewed in Poewe et al.,2017).展开更多
Different forms of programmed cell death have been described to participate in the degeneration of dopaminergic neurons in Parkinson’s disease(PD).Given the critical role that disturbance of mitochondrial homeostasis...Different forms of programmed cell death have been described to participate in the degeneration of dopaminergic neurons in Parkinson’s disease(PD).Given the critical role that disturbance of mitochondrial homeostasis plays in the pathogenesis of PD,apoptosis can be reasonably considered as one of the cell death pathways involved in neuronal loss(Schon and Przedborski,2011).Multiple lines of evidence support that proposal such as the observations in postmortem human brain samples of PD patients including mitochondrial complex I deficiency,reactive oxygen species generation,and oxidative damage to lipids,proteins,and DNA,among others.展开更多
A key pathological feature of Parkinson’s disease(PD)is that lysosomes are overwhelmed with cellular materials that need to be degraded and cleared.While the build-up of protein is characteristic of neurodegenerative...A key pathological feature of Parkinson’s disease(PD)is that lysosomes are overwhelmed with cellular materials that need to be degraded and cleared.While the build-up of protein is characteristic of neurodegenerative diseases such as PD and Alzheimer’s disease(AD)and is thought to reflect lysosome dysfunction,lipid accumulation may also contribute to and be indicative of severe lysosomal dysfunction.Much is known about the detrimental effects of glucosylceramide accumulation in PD lysosomes.展开更多
Neuroinflammation,the inflammatory response of the central nervous system(CNS),is a common feature of many neurological disorders such as sepsis-associated encephalopathy(SAE),multiple sclerosis(MS),and Parkinson'...Neuroinflammation,the inflammatory response of the central nervous system(CNS),is a common feature of many neurological disorders such as sepsis-associated encephalopathy(SAE),multiple sclerosis(MS),and Parkinson's disease(PD).Prior studies identified cytokines(e.g.,tumor necrosis factor[TNF],interleukin[IL]-1,and IL-6)delivered by resident glial cells and brain-invading peripheral immune cells as the major contributor to neuroinflammation(Becher et al.,2017).In addition to pro-inflammatory cytokines,elevated levels of extracellular purine molecules such as adenosine triphosphate(ATP)and adenosine can be detected upon any pathological insults(e.g.,injury,ischemia,and hypoxia),contributing to the progression of neurological disorders(Borea et al.,2017).展开更多
Currently,our understanding of the pathogenesis of major neurodegenerative disorders,such as Alzheimer's,Parkinson's,and Huntington's diseases,is largely shaped by the amyloid cascade hypothesis.Pa rticula...Currently,our understanding of the pathogenesis of major neurodegenerative disorders,such as Alzheimer's,Parkinson's,and Huntington's diseases,is largely shaped by the amyloid cascade hypothesis.Pa rticularly,this hypothesis posits that in Alzheimer's disease,the aggregation of amyloid-beta peptide initiates a series of pathological processes leading to neuronal dysfunction and death(Zhang et al.,2024).展开更多
The mature central nervous system(CNS,composed of the brain,spinal cord,olfactory and optic nerves)is unable to regenerate spontaneously after an insult,both in the cases of neurodegenerative diseases(for example Alzh...The mature central nervous system(CNS,composed of the brain,spinal cord,olfactory and optic nerves)is unable to regenerate spontaneously after an insult,both in the cases of neurodegenerative diseases(for example Alzheimer's or Parkinson's disease)or traumatic injuries(such as spinal cord lesions).In the last 20 years,the field has made significant progress in unlocking axon regrowth.展开更多
N umerous neurological disorders negatively impact the nervous system,either through loss of neurons or by disrupting the normal functioning of neural networks.These impairments manifest as cognitive defects,memory lo...N umerous neurological disorders negatively impact the nervous system,either through loss of neurons or by disrupting the normal functioning of neural networks.These impairments manifest as cognitive defects,memory loss,behavioral abnormalities,and motor dysfunctions.Decades of research have significantly advanced our understanding of the pathophysiology underlying neurodegene rative diseases,including Alzheimer's disease(AD),Parkinson's disease,amyotrophic lateral sclerosis,and others.展开更多
Short-chain fatty acids,metabolites produced by the fermentation of dietary fiber by gut microbiota,have garnered significant attention due to their correlation with neurodegenerative diseases,particularly Parkinson’...Short-chain fatty acids,metabolites produced by the fermentation of dietary fiber by gut microbiota,have garnered significant attention due to their correlation with neurodegenerative diseases,particularly Parkinson’s disease.In this review,we summarize the changes in short-chain fatty acid levels and the abundance of short-chain fatty acid-producing bacteria in various samples from patients with Parkinson’s disease,highlighting the critical role of gut homeostasis imbalance in the pathogenesis and progression of the disease.Focusing on the nervous system,we discuss the molecular mechanisms by which short-chain fatty acids influence the homeostasis of both the enteric nervous system and the central nervous system.We identify key processes,including the activation of G protein-coupled receptors and the inhibition of histone deacetylases by short-chain fatty acids.Importantly,structural or functional disruptions in the enteric nervous system mediated by these fatty acids may lead to abnormalα-synuclein expression and gastrointestinal dysmotility,which could serve as an initiating event in Parkinson’s disease.Furthermore,we propose that short-chain fatty acids help establish communication between the enteric nervous system and the central nervous system via the vagal nerve,immune circulation,and endocrine signaling.This communication may shed light on their potential role in the transmission ofα-synuclein from the gut to the brain.Finally,we elucidate novel treatment strategies for Parkinson’s disease that target short-chain fatty acids and examine the challenges associated with translating short-chain fatty acid-based therapies into clinical practice.In conclusion,this review emphasizes the pivotal role of short-chain fatty acids in regulating gut-brain axis integrity and their significance in the pathogenesis of Parkinson’s disease from the perspective of the nervous system.Moreover,it highlights the potential value of short-chain fatty acids in early intervention for Parkinson’s disease.Future research into the molecular mechanisms of short-chain fatty acids and their synergistic interactions with other gut metabolites is likely to advance the clinical translation of innovative short-chain fatty acid-based therapies for Parkinson’s disease.展开更多
BACKGROUND Parkinson’s disease(PD)is a common neurodegenerative disorder in the elderly population.Non-motor symptoms such as anxiety and depression are often subtle,hindering early detection and intervention,yet the...BACKGROUND Parkinson’s disease(PD)is a common neurodegenerative disorder in the elderly population.Non-motor symptoms such as anxiety and depression are often subtle,hindering early detection and intervention,yet they markedly affect quality of life and clinical outcomes.AIM To investigate the prevalence of anxiety and depression in elderly PD patients,identify associated risk factors,and assess their relationship with fatigue severity.METHODS A cross-sectional analysis was conducted in 123 elderly PD patients treated at The Second Rehabilitation Hospital of Shanghai between January 2023 and December 2024.Demographic and clinical data were obtained using standardized questionnaires.Anxiety,depression,and fatigue were assessed using the Beck Anxiety Inventory(BAI),Geriatric Depression Scale(GDS),and Fatigue Scale-14(FS-14),respectively.Binary logistic regression identified risk factors for anxiety and depression,whereas Spearman’s correlation assessed associations with fatigue.RESULTS Anxiety and depression prevalence rates were 64.2%(mean BAI score:19.59±10.92)and 56.1%(mean GDS score:12.82±6.37),respectively.The mean FS-14 total score was 9.46±1.89,comprising physical(5.77±1.51)and mental(3.69±1.20)fatigue components.Significant positive correlations were observed between fatigue scores(total,physical,and mental)and both anxiety and depression(all P<0.05).Univariate analysis revealed statistically significant associations between anxiety/depression and monthly income,disease duration,and disease severity(all P<0.05).Multivariate logistic regression indicated higher anxiety risk in patients with lower monthly income,prolonged disease duration,advanced disease severity,or multimorbidity.Depression risk was elevated in patients with lower monthly income and severe disease,whereas longer disease duration unexpectedly served as a protective factor.CONCLUSION Elderly PD patients show high rates of anxiety and depression,both of which are significantly correlated with fatigue severity.These findings highlight the importance of psychological monitoring and targeted mental health interventions in PD management among the elderly.展开更多
Background:Neurological disorders(NDs),including ischemic stroke(IS),Parkinson’s disease(PD),and Alzheimer’s disease(AD),are major contributors to global morbidity and mortality.Boswellia extract has demonstrated ne...Background:Neurological disorders(NDs),including ischemic stroke(IS),Parkinson’s disease(PD),and Alzheimer’s disease(AD),are major contributors to global morbidity and mortality.Boswellia extract has demonstrated neuroprotective properties,yet a comprehensive systematic review assessing its efficacy remains absent.This study aims to evaluate the efficacy of Boswellia extract in treating NDs,with a particular focus on its effects in AD and its potential for long-term neurorestoration,thereby supporting further investigation into Boswellia’s therapeutic role in ND management.Methods:A systematic literature search was performed in PubMed,Web of Science,ScienceDirect,and Google Scholar for English-language studies published up to March 2024.Eighteen studies met the inclusion criteria and were included in the meta-analysis.The study protocol was registered on PROSPERO(CRD42024524386).Eligible studies involved rodent models of IS,PD,or AD with post-operative interventions using Boswellia extract.Data extraction focused on mechanisms of action,dosages,treatment durations,and therapeutic outcomes.Studies were excluded if they involved non-ND models,combined treatments,or had incomplete data.Two researchers independently conducted literature screening and data extraction.Statistical analyses were conducted using Stata(version 17)and RevMan(version 5.4),employing fixed or random-effects models based on heterogeneity assessments.Result s:Boswellia extract significantly improved the mean effect size for NDs(ES=1.28,95%CI(1.05,1.51),P<0.001).Specifically,it reduced cerebral infarct volume in IS(SMD=−2.87,95%CI(−3.42,−2.32))and enhanced behavioral outcomes in AD(SMD=3.26,95%CI(2.07,5.14))and PD(SMD=5.37,95%CI(3.93,6.80)).Subgroup analyses revealed that Boswellia extract exhibited superior efficacy in AD when administered orally and via intra-cerebroventricular injection.Long-term treatment with Boswellia extract suggested potential neurorestorative effects.Additionally,Boswellia extract was more effective than its monomeric constituents,highlighting its promising role in ND treatment.Conclusion:Boswellia extract demonstrates significant neuroprotective effects across various NDs,particularly in AD and in promoting long-term neurorestoration.These findings support the need for further research into Boswellia’s potential as a therapeutic agent in the management of neurological disorders.展开更多
Myelination,the continuous ensheathment of neuronal axons,is a lifelong process in the nervous system that is essential for the precise,temporospatial conduction of action potentials between neurons.Myelin also provid...Myelination,the continuous ensheathment of neuronal axons,is a lifelong process in the nervous system that is essential for the precise,temporospatial conduction of action potentials between neurons.Myelin also provides intercellular metabolic support to axons.Even minor disruptions in the integrity of myelin can impair neural performance and increase susceptibility to neurological diseases.In fact,myelin degeneration is a well-known neuropathological condition that is associated with normal aging and several neurodegenerative diseases,including multiple sclerosis and Alzheimer’s disease.In the central nervous system,compact myelin sheaths are formed by fully mature oligodendrocytes.However,the entire oligodendrocyte lineage is susceptible to changes in the biological microenvironment and other risk factors that arise as the brain ages.In addition to their well-known role in action potential propagation,oligodendrocytes also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes.Therefore,myelin degeneration in the aging central nervous system is a significant contributor to the development of neurodegenerative diseases.Interventions that mitigate age-related myelin degeneration can improve neurological function in aging individuals.In this review,we investigate the changes in myelin that are associated with aging and their underlying mechanisms.We also discuss recent advances in understanding how myelin degeneration in the aging brain contributes to neurodegenerative diseases and explore the factors that can prevent,slow down,or even reverse age-related myelin degeneration.Future research will enhance our understanding of how reducing age-related myelin degeneration can be used as a therapeutic target for delaying or preventing neurodegenerative diseases.展开更多
Early life stress correlates with a higher prevalence of neurological disorders,including autism,attention-deficit/hyperactivity disorder,schizophrenia,depression,and Parkinson's disease.These conditions,primarily...Early life stress correlates with a higher prevalence of neurological disorders,including autism,attention-deficit/hyperactivity disorder,schizophrenia,depression,and Parkinson's disease.These conditions,primarily involving abnormal development and damage of the dopaminergic system,pose significant public health challenges.Microglia,as the primary immune cells in the brain,are crucial in regulating neuronal circuit development and survival.From the embryonic stage to adulthood,microglia exhibit stage-specific gene expression profiles,transcriptome characteristics,and functional phenotypes,enhancing the susceptibility to early life stress.However,the role of microglia in mediating dopaminergic system disorders under early life stress conditions remains poorly understood.This review presents an up-to-date overview of preclinical studies elucidating the impact of early life stress on microglia,leading to dopaminergic system disorders,along with the underlying mechanisms and therapeutic potential for neurodegenerative and neurodevelopmental conditions.Impaired microglial activity damages dopaminergic neurons by diminishing neurotrophic support(e.g.,insulin-like growth factor-1)and hinders dopaminergic axon growth through defective phagocytosis and synaptic pruning.Furthermore,blunted microglial immunoreactivity suppresses striatal dopaminergic circuit development and reduces neuronal transmission.Furthermore,inflammation and oxidative stress induced by activated microglia can directly damage dopaminergic neurons,inhibiting dopamine synthesis,reuptake,and receptor activity.Enhanced microglial phagocytosis inhibits dopamine axon extension.These long-lasting effects of microglial perturbations may be driven by early life stress–induced epigenetic reprogramming of microglia.Indirectly,early life stress may influence microglial function through various pathways,such as astrocytic activation,the hypothalamic–pituitary–adrenal axis,the gut–brain axis,and maternal immune signaling.Finally,various therapeutic strategies and molecular mechanisms for targeting microglia to restore the dopaminergic system were summarized and discussed.These strategies include classical antidepressants and antipsychotics,antibiotics and anti-inflammatory agents,and herbal-derived medicine.Further investigations combining pharmacological interventions and genetic strategies are essential to elucidate the causal role of microglial phenotypic and functional perturbations in the dopaminergic system disrupted by early life stress.展开更多
Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using d...Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested.展开更多
Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been...Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.展开更多
In recent years,exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research.Exosomes are small and can effectively cross the blood-brain barrier,...In recent years,exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research.Exosomes are small and can effectively cross the blood-brain barrier,allowing them to target deep brain lesions.Recent studies have demonstrated that exosomes derived from different cell types may exert therapeutic effects by regulating the expression of various inflammatory cytokines,mRNAs,and disease-related proteins,thereby halting the progression of neurodegenerative diseases and exhibiting beneficial effects.However,exosomes are composed of lipid bilayer membranes and lack the ability to recognize specific target cells.This limitation can lead to side effects and toxicity when they interact with non-specific cells.Growing evidence suggests that surface-modified exosomes have enhanced targeting capabilities and can be used as targeted drug-delivery vehicles that show promising results in the treatment of neurodegenerative diseases.In this review,we provide an up-to-date overview of existing research aimed at devising approaches to modify exosomes and elucidating their therapeutic potential in neurodegenerative diseases.Our findings indicate that exosomes can efficiently cross the blood-brain barrier to facilitate drug delivery and can also serve as early diagnostic markers for neurodegenerative diseases.We introduce the strategies being used to enhance exosome targeting,including genetic engineering,chemical modifications(both covalent,such as click chemistry and metabolic engineering,and non-covalent,such as polyvalent electrostatic and hydrophobic interactions,ligand-receptor binding,aptamer-based modifications,and the incorporation of CP05-anchored peptides),and nanomaterial modifications.Research into these strategies has confirmed that exosomes have significant therapeutic potential for neurodegenerative diseases.However,several challenges remain in the clinical application of exosomes.Improvements are needed in preparation,characterization,and optimization methods,as well as in reducing the adverse reactions associated with their use.Additionally,the range of applications and the safety of exosomes require further research and evaluation.展开更多
Parkinson’s disease is characterized by synucleinopathy-associated neurodegeneration.Previous studies have shown that glucagon-like peptide-1(GLP-1)has beneficial effects in a mouse model of Parkinson’s disease indu...Parkinson’s disease is characterized by synucleinopathy-associated neurodegeneration.Previous studies have shown that glucagon-like peptide-1(GLP-1)has beneficial effects in a mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.However,the effect of GLP-1 on intrinsic synuclein malfunction remains unclear.In this study,we investigated the effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism in SncaA53T transgenic mice and explored the underlying mechanisms.Our data showed that Lactococcus lactis MG1363-pMG36e-GLP-1 inhibited dopaminergic neuronal death,reduced pathological aggregation ofα-synuclein,and decreased movement disorders in SncaA53T transgenic mice.Furthermore,Lactococcus lactis MG1363-pMG36e-GLP-1 downregulated lipopolysaccharide-related inflammation,reduced cerebral activation of microglia and astrocytes,and promoted cell survival via the GLP-1 receptor/PI3K/Akt pathway in the substantia nigra.Additionally,Lactococcus lactis MG1363-pMG36e-GLP-1 decreased serum levels of pro-inflammatory molecules including lipopolysaccharide,lipopolysaccharide binding protein,interleukin-1β,and interleukin-6.Gut histopathology and western blotting further revealed that Lactococcus lactis MG1363-pMG36e-GLP-1 increased the expression of gut integrity-related proteins and reduced lipopolysaccharide-related inflammation by reversing gut dysbiosis in SncaA53T transgenic mice.Our findings showed that the beneficial effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism traits in SncaA53T transgenic mice is mediated by microglial polarization and the reversal of dysbiosis.Collectively,our findings suggest that Lactococcus lactis MG1363-pMG36e-GLP-1 is a promising therapeutic agent for the treatment of Parkinson’s disease.展开更多
文摘Parkinsons disease(PD)is a chronic,progressive neurodegenerative disorder characterized by both motor and non-motor symptoms.Pain,a key component of PDs non-motor symptoms,was first documented by Charcot in 1872 as a potential correlate of the disease.While pharmacological and surgical interventions have gained traction in managing PD-related pain,the therapeutic framework remains inconsistent.Understanding the pathogenesis and contributing factors of PD pain is crucial for developing novel therapies and refining disease identification and treatment protocols.This review examines the potential mechanisms and influencing factors of PD-associated pain,with the aim of identifying new therapeutic targets for PD pain.
基金supported by the Spanish Ministry of Science and Innovation via a doctoral grant[FPU22/03656].supported by the Spanish Ministry of Science and Innovation(PID2022-137963OB-I00)Generalitat de Catalunya(2021-SGR-00635 AGAUR)+1 种基金CERCA Programme(Generalitat de Catalunya)by ICREA,ICREA-Academia 2020(to SV)。
文摘Alpha-synuclein and Parkinson's disease:Neuronal damage and inflammation caused by the aggregation of alpha-synuclein(α-syn)are central to a group of disorders known as synucleopathies,which includes Parkinson's disease(PD),dementia with Lewy bodies,and multiple system atrophy,among others.PD,the most common synucleinopathy,is the second most prevalent neurodegenerative disease after Alzheimer's disease,and it is the fastest growing.Its primary hallmark is the degeneration of dopaminergic neurons in the substantia nigra pars compacta,disrupting the communication with the striatum.
基金supported by Swiss Center for Applied Human Toxicology(SCAHT AP22-01)(to RN)。
文摘Parkinson's disease(PD)is the second most common neurodegenerative disorder.The clinical manifestations of PD include motor symptoms,such as bradykinesia,resting tremor,rigidity,and nonmotor symptoms,which include disturbances in sleep,gastrointestinal function,and olfaction.PD misdiagnosis rates have been reported to reach approximately 30%,partly owing to the heterogeneity of parkinsonism with non-PD pathologies,and the differential diagnosis of PD from neurodegenerative diseases such as multiple systemic atrophy(MSA)and progressive supranuclear palsy poses another unmet need.
基金supported by the DGIST start-up funds from the Ministry of Science and ICT(2024010330)a National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.RS-2024-00351442)(to TWK).
文摘Parkinson’s disease(PD)is the second most common neurodegenerative disorder.The progressive degeneration of dopamine(DA)producing neurons in the midbrain is the pathological hallmark,which leads to debilitating motor symptoms,including tremors,rigidity,and bradykinesia.Drug treatments,such as levodopa,provide symptomatic relief.However,they do not halt disease progression,and their effectiveness diminishes over time(reviewed in Poewe et al.,2017).
基金supported by the Spanish Ministerio de Ciencia e Innovación/Agencia Española de Investigación(PID2021-124096OB-I00)(to JLV)JGR was granted by Demensfonden,The Royal Physiografic Society of Lund,Neurofonden,The Greta och Johan Kocks stiftelser,and Bertil och Ebon Norlins stiftelse.
文摘Different forms of programmed cell death have been described to participate in the degeneration of dopaminergic neurons in Parkinson’s disease(PD).Given the critical role that disturbance of mitochondrial homeostasis plays in the pathogenesis of PD,apoptosis can be reasonably considered as one of the cell death pathways involved in neuronal loss(Schon and Przedborski,2011).Multiple lines of evidence support that proposal such as the observations in postmortem human brain samples of PD patients including mitochondrial complex I deficiency,reactive oxygen species generation,and oxidative damage to lipids,proteins,and DNA,among others.
文摘A key pathological feature of Parkinson’s disease(PD)is that lysosomes are overwhelmed with cellular materials that need to be degraded and cleared.While the build-up of protein is characteristic of neurodegenerative diseases such as PD and Alzheimer’s disease(AD)and is thought to reflect lysosome dysfunction,lipid accumulation may also contribute to and be indicative of severe lysosomal dysfunction.Much is known about the detrimental effects of glucosylceramide accumulation in PD lysosomes.
基金supported by grants from the Deutsche Forschungsgemeinschaft(HU 2614/1-1(Project No.462650276))the Fritz Thyssen Foundation(10.21.1.021MN)the Medical faculty of the University of Saarland(HOMFOR2016,HOMFORexzellent2017,HOMFOR2024 Anschubfinanzierung)to WH。
文摘Neuroinflammation,the inflammatory response of the central nervous system(CNS),is a common feature of many neurological disorders such as sepsis-associated encephalopathy(SAE),multiple sclerosis(MS),and Parkinson's disease(PD).Prior studies identified cytokines(e.g.,tumor necrosis factor[TNF],interleukin[IL]-1,and IL-6)delivered by resident glial cells and brain-invading peripheral immune cells as the major contributor to neuroinflammation(Becher et al.,2017).In addition to pro-inflammatory cytokines,elevated levels of extracellular purine molecules such as adenosine triphosphate(ATP)and adenosine can be detected upon any pathological insults(e.g.,injury,ischemia,and hypoxia),contributing to the progression of neurological disorders(Borea et al.,2017).
基金supported by a grant from NIH(R01AI132695)to RM。
文摘Chronic wasting disease—a prion disease affecting cervids:Many neurological conditions,including Alzheimer's and Parkinson's diseases,amyotrophic lateral sclerosis,frontotemporal dementias,among others,are caused by the accumulation of misfolded proteins in the brain.These diseases affect not only humans,but also animals.
基金funded by the Russian Science Foundation(grant No.23-74-10092)(to AIS)。
文摘Currently,our understanding of the pathogenesis of major neurodegenerative disorders,such as Alzheimer's,Parkinson's,and Huntington's diseases,is largely shaped by the amyloid cascade hypothesis.Pa rticularly,this hypothesis posits that in Alzheimer's disease,the aggregation of amyloid-beta peptide initiates a series of pathological processes leading to neuronal dysfunction and death(Zhang et al.,2024).
基金supported by ANR(ANR-21CE16-0008-01)ANR(ANR-21-CE16-0008-02 and ANR-23CE52-0007)+1 种基金UNADEV(A22018CS)(to HN)UNADEV(A22020CS)(to SB)。
文摘The mature central nervous system(CNS,composed of the brain,spinal cord,olfactory and optic nerves)is unable to regenerate spontaneously after an insult,both in the cases of neurodegenerative diseases(for example Alzheimer's or Parkinson's disease)or traumatic injuries(such as spinal cord lesions).In the last 20 years,the field has made significant progress in unlocking axon regrowth.
基金supported by the National Institute on Aging(Nos.AG000723 and AG000578)(to VAB)the Fondation Sante(No.19656),Greece 2.0+1 种基金the National Recovery and Resilience Plan’s flagship program TAEDR-0535850the European Research Council(No.101077374-Synapto Mitophagy)(to KP)。
文摘N umerous neurological disorders negatively impact the nervous system,either through loss of neurons or by disrupting the normal functioning of neural networks.These impairments manifest as cognitive defects,memory loss,behavioral abnormalities,and motor dysfunctions.Decades of research have significantly advanced our understanding of the pathophysiology underlying neurodegene rative diseases,including Alzheimer's disease(AD),Parkinson's disease,amyotrophic lateral sclerosis,and others.
基金supported by the National Key R&D Program of China,No.2021YFC2501200(to PC).
文摘Short-chain fatty acids,metabolites produced by the fermentation of dietary fiber by gut microbiota,have garnered significant attention due to their correlation with neurodegenerative diseases,particularly Parkinson’s disease.In this review,we summarize the changes in short-chain fatty acid levels and the abundance of short-chain fatty acid-producing bacteria in various samples from patients with Parkinson’s disease,highlighting the critical role of gut homeostasis imbalance in the pathogenesis and progression of the disease.Focusing on the nervous system,we discuss the molecular mechanisms by which short-chain fatty acids influence the homeostasis of both the enteric nervous system and the central nervous system.We identify key processes,including the activation of G protein-coupled receptors and the inhibition of histone deacetylases by short-chain fatty acids.Importantly,structural or functional disruptions in the enteric nervous system mediated by these fatty acids may lead to abnormalα-synuclein expression and gastrointestinal dysmotility,which could serve as an initiating event in Parkinson’s disease.Furthermore,we propose that short-chain fatty acids help establish communication between the enteric nervous system and the central nervous system via the vagal nerve,immune circulation,and endocrine signaling.This communication may shed light on their potential role in the transmission ofα-synuclein from the gut to the brain.Finally,we elucidate novel treatment strategies for Parkinson’s disease that target short-chain fatty acids and examine the challenges associated with translating short-chain fatty acid-based therapies into clinical practice.In conclusion,this review emphasizes the pivotal role of short-chain fatty acids in regulating gut-brain axis integrity and their significance in the pathogenesis of Parkinson’s disease from the perspective of the nervous system.Moreover,it highlights the potential value of short-chain fatty acids in early intervention for Parkinson’s disease.Future research into the molecular mechanisms of short-chain fatty acids and their synergistic interactions with other gut metabolites is likely to advance the clinical translation of innovative short-chain fatty acid-based therapies for Parkinson’s disease.
基金Supported by Foundation of Shanghai Baoshan Science and Technology Commission,No.2024-E-66Shanghai Nursing Association Scientific Research Project,No.2024MS-B02.
文摘BACKGROUND Parkinson’s disease(PD)is a common neurodegenerative disorder in the elderly population.Non-motor symptoms such as anxiety and depression are often subtle,hindering early detection and intervention,yet they markedly affect quality of life and clinical outcomes.AIM To investigate the prevalence of anxiety and depression in elderly PD patients,identify associated risk factors,and assess their relationship with fatigue severity.METHODS A cross-sectional analysis was conducted in 123 elderly PD patients treated at The Second Rehabilitation Hospital of Shanghai between January 2023 and December 2024.Demographic and clinical data were obtained using standardized questionnaires.Anxiety,depression,and fatigue were assessed using the Beck Anxiety Inventory(BAI),Geriatric Depression Scale(GDS),and Fatigue Scale-14(FS-14),respectively.Binary logistic regression identified risk factors for anxiety and depression,whereas Spearman’s correlation assessed associations with fatigue.RESULTS Anxiety and depression prevalence rates were 64.2%(mean BAI score:19.59±10.92)and 56.1%(mean GDS score:12.82±6.37),respectively.The mean FS-14 total score was 9.46±1.89,comprising physical(5.77±1.51)and mental(3.69±1.20)fatigue components.Significant positive correlations were observed between fatigue scores(total,physical,and mental)and both anxiety and depression(all P<0.05).Univariate analysis revealed statistically significant associations between anxiety/depression and monthly income,disease duration,and disease severity(all P<0.05).Multivariate logistic regression indicated higher anxiety risk in patients with lower monthly income,prolonged disease duration,advanced disease severity,or multimorbidity.Depression risk was elevated in patients with lower monthly income and severe disease,whereas longer disease duration unexpectedly served as a protective factor.CONCLUSION Elderly PD patients show high rates of anxiety and depression,both of which are significantly correlated with fatigue severity.These findings highlight the importance of psychological monitoring and targeted mental health interventions in PD management among the elderly.
基金supported by the National Natural Science Foundation of China,specifically through grants(No.8227431382304947)Key Research and Development Project of Shaanxi Province(2023GHZD43).Peer re v iew information。
文摘Background:Neurological disorders(NDs),including ischemic stroke(IS),Parkinson’s disease(PD),and Alzheimer’s disease(AD),are major contributors to global morbidity and mortality.Boswellia extract has demonstrated neuroprotective properties,yet a comprehensive systematic review assessing its efficacy remains absent.This study aims to evaluate the efficacy of Boswellia extract in treating NDs,with a particular focus on its effects in AD and its potential for long-term neurorestoration,thereby supporting further investigation into Boswellia’s therapeutic role in ND management.Methods:A systematic literature search was performed in PubMed,Web of Science,ScienceDirect,and Google Scholar for English-language studies published up to March 2024.Eighteen studies met the inclusion criteria and were included in the meta-analysis.The study protocol was registered on PROSPERO(CRD42024524386).Eligible studies involved rodent models of IS,PD,or AD with post-operative interventions using Boswellia extract.Data extraction focused on mechanisms of action,dosages,treatment durations,and therapeutic outcomes.Studies were excluded if they involved non-ND models,combined treatments,or had incomplete data.Two researchers independently conducted literature screening and data extraction.Statistical analyses were conducted using Stata(version 17)and RevMan(version 5.4),employing fixed or random-effects models based on heterogeneity assessments.Result s:Boswellia extract significantly improved the mean effect size for NDs(ES=1.28,95%CI(1.05,1.51),P<0.001).Specifically,it reduced cerebral infarct volume in IS(SMD=−2.87,95%CI(−3.42,−2.32))and enhanced behavioral outcomes in AD(SMD=3.26,95%CI(2.07,5.14))and PD(SMD=5.37,95%CI(3.93,6.80)).Subgroup analyses revealed that Boswellia extract exhibited superior efficacy in AD when administered orally and via intra-cerebroventricular injection.Long-term treatment with Boswellia extract suggested potential neurorestorative effects.Additionally,Boswellia extract was more effective than its monomeric constituents,highlighting its promising role in ND treatment.Conclusion:Boswellia extract demonstrates significant neuroprotective effects across various NDs,particularly in AD and in promoting long-term neurorestoration.These findings support the need for further research into Boswellia’s potential as a therapeutic agent in the management of neurological disorders.
基金supported by grants from Guangdong Basic and Applied Basic Research Foundation,No.2021A1515110801(to SW)the National Natural Science Foundation of China,No.82301511(to SW)+1 种基金“Double First-Class”Construction Project of NPU,Nos.0515023GH0202320(to JC),0515023SH0201320(to JC)973 Program,No.2011CB504100(to JC).
文摘Myelination,the continuous ensheathment of neuronal axons,is a lifelong process in the nervous system that is essential for the precise,temporospatial conduction of action potentials between neurons.Myelin also provides intercellular metabolic support to axons.Even minor disruptions in the integrity of myelin can impair neural performance and increase susceptibility to neurological diseases.In fact,myelin degeneration is a well-known neuropathological condition that is associated with normal aging and several neurodegenerative diseases,including multiple sclerosis and Alzheimer’s disease.In the central nervous system,compact myelin sheaths are formed by fully mature oligodendrocytes.However,the entire oligodendrocyte lineage is susceptible to changes in the biological microenvironment and other risk factors that arise as the brain ages.In addition to their well-known role in action potential propagation,oligodendrocytes also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes.Therefore,myelin degeneration in the aging central nervous system is a significant contributor to the development of neurodegenerative diseases.Interventions that mitigate age-related myelin degeneration can improve neurological function in aging individuals.In this review,we investigate the changes in myelin that are associated with aging and their underlying mechanisms.We also discuss recent advances in understanding how myelin degeneration in the aging brain contributes to neurodegenerative diseases and explore the factors that can prevent,slow down,or even reverse age-related myelin degeneration.Future research will enhance our understanding of how reducing age-related myelin degeneration can be used as a therapeutic target for delaying or preventing neurodegenerative diseases.
基金supported by the National Natural Science Foundation of China,Nos.82304990(to NY),81973748(to JC),82174278(to JC)the National Key R&D Program of China,No.2023YFE0209500(to JC)+4 种基金China Postdoctoral Science Foundation,No.2023M732380(to NY)Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine,No.202102010014(to JC)Huang Zhendong Research Fund for Traditional Chinese Medicine of Jinan University,No.201911(to JC)National Innovation and Entrepreneurship Training Program for Undergraduates in China,No.202310559128(to NY and QM)Innovation and Entrepreneurship Training Program for Undergraduates at Jinan University,Nos.CX24380,CX24381(both to NY and QM)。
文摘Early life stress correlates with a higher prevalence of neurological disorders,including autism,attention-deficit/hyperactivity disorder,schizophrenia,depression,and Parkinson's disease.These conditions,primarily involving abnormal development and damage of the dopaminergic system,pose significant public health challenges.Microglia,as the primary immune cells in the brain,are crucial in regulating neuronal circuit development and survival.From the embryonic stage to adulthood,microglia exhibit stage-specific gene expression profiles,transcriptome characteristics,and functional phenotypes,enhancing the susceptibility to early life stress.However,the role of microglia in mediating dopaminergic system disorders under early life stress conditions remains poorly understood.This review presents an up-to-date overview of preclinical studies elucidating the impact of early life stress on microglia,leading to dopaminergic system disorders,along with the underlying mechanisms and therapeutic potential for neurodegenerative and neurodevelopmental conditions.Impaired microglial activity damages dopaminergic neurons by diminishing neurotrophic support(e.g.,insulin-like growth factor-1)and hinders dopaminergic axon growth through defective phagocytosis and synaptic pruning.Furthermore,blunted microglial immunoreactivity suppresses striatal dopaminergic circuit development and reduces neuronal transmission.Furthermore,inflammation and oxidative stress induced by activated microglia can directly damage dopaminergic neurons,inhibiting dopamine synthesis,reuptake,and receptor activity.Enhanced microglial phagocytosis inhibits dopamine axon extension.These long-lasting effects of microglial perturbations may be driven by early life stress–induced epigenetic reprogramming of microglia.Indirectly,early life stress may influence microglial function through various pathways,such as astrocytic activation,the hypothalamic–pituitary–adrenal axis,the gut–brain axis,and maternal immune signaling.Finally,various therapeutic strategies and molecular mechanisms for targeting microglia to restore the dopaminergic system were summarized and discussed.These strategies include classical antidepressants and antipsychotics,antibiotics and anti-inflammatory agents,and herbal-derived medicine.Further investigations combining pharmacological interventions and genetic strategies are essential to elucidate the causal role of microglial phenotypic and functional perturbations in the dopaminergic system disrupted by early life stress.
基金The work described in this paper was fully supported by a grant from Hong Kong Metropolitan University(RIF/2021/05).
文摘Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested.
基金supported by The University of Hong Kong,China(109000487,109001694,204610401,and 204610519)National Natural Science Foundation of China(82402225)(to JH).
文摘Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.
基金supported by the National Natural Science Foundation of China,No.22103055(to JG)the Natural Science Foundation of Hebei Province,No.F2024110001(to HC)Open Project of Tianjin Key Laboratory of Optoelectronic Detection Technology and System,Nos.2024LODTS215(to NL),2024LODTS216(to XS).
文摘In recent years,exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research.Exosomes are small and can effectively cross the blood-brain barrier,allowing them to target deep brain lesions.Recent studies have demonstrated that exosomes derived from different cell types may exert therapeutic effects by regulating the expression of various inflammatory cytokines,mRNAs,and disease-related proteins,thereby halting the progression of neurodegenerative diseases and exhibiting beneficial effects.However,exosomes are composed of lipid bilayer membranes and lack the ability to recognize specific target cells.This limitation can lead to side effects and toxicity when they interact with non-specific cells.Growing evidence suggests that surface-modified exosomes have enhanced targeting capabilities and can be used as targeted drug-delivery vehicles that show promising results in the treatment of neurodegenerative diseases.In this review,we provide an up-to-date overview of existing research aimed at devising approaches to modify exosomes and elucidating their therapeutic potential in neurodegenerative diseases.Our findings indicate that exosomes can efficiently cross the blood-brain barrier to facilitate drug delivery and can also serve as early diagnostic markers for neurodegenerative diseases.We introduce the strategies being used to enhance exosome targeting,including genetic engineering,chemical modifications(both covalent,such as click chemistry and metabolic engineering,and non-covalent,such as polyvalent electrostatic and hydrophobic interactions,ligand-receptor binding,aptamer-based modifications,and the incorporation of CP05-anchored peptides),and nanomaterial modifications.Research into these strategies has confirmed that exosomes have significant therapeutic potential for neurodegenerative diseases.However,several challenges remain in the clinical application of exosomes.Improvements are needed in preparation,characterization,and optimization methods,as well as in reducing the adverse reactions associated with their use.Additionally,the range of applications and the safety of exosomes require further research and evaluation.
基金supported by grants from the Jiangxi Provincial Natural Science Foundation,No.20242BAB26134(to XF)the National Natural Science Foundation of China,Nos.82060638(to TC),82060222(to XF),82460237(to XF)+1 种基金the Major Disciplines of Academic and Technical Leaders Project of Jiangxi Province,Nos.20194BCJ22032(to TC),20213BCJL22049(to XF)Science and Technology Plan of Jiangxi Health Planning Committee,No.202210390(to XF).
文摘Parkinson’s disease is characterized by synucleinopathy-associated neurodegeneration.Previous studies have shown that glucagon-like peptide-1(GLP-1)has beneficial effects in a mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.However,the effect of GLP-1 on intrinsic synuclein malfunction remains unclear.In this study,we investigated the effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism in SncaA53T transgenic mice and explored the underlying mechanisms.Our data showed that Lactococcus lactis MG1363-pMG36e-GLP-1 inhibited dopaminergic neuronal death,reduced pathological aggregation ofα-synuclein,and decreased movement disorders in SncaA53T transgenic mice.Furthermore,Lactococcus lactis MG1363-pMG36e-GLP-1 downregulated lipopolysaccharide-related inflammation,reduced cerebral activation of microglia and astrocytes,and promoted cell survival via the GLP-1 receptor/PI3K/Akt pathway in the substantia nigra.Additionally,Lactococcus lactis MG1363-pMG36e-GLP-1 decreased serum levels of pro-inflammatory molecules including lipopolysaccharide,lipopolysaccharide binding protein,interleukin-1β,and interleukin-6.Gut histopathology and western blotting further revealed that Lactococcus lactis MG1363-pMG36e-GLP-1 increased the expression of gut integrity-related proteins and reduced lipopolysaccharide-related inflammation by reversing gut dysbiosis in SncaA53T transgenic mice.Our findings showed that the beneficial effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism traits in SncaA53T transgenic mice is mediated by microglial polarization and the reversal of dysbiosis.Collectively,our findings suggest that Lactococcus lactis MG1363-pMG36e-GLP-1 is a promising therapeutic agent for the treatment of Parkinson’s disease.