期刊文献+
共找到27,643篇文章
< 1 2 250 >
每页显示 20 50 100
Model’s parameter sensitivity assessment and their impact on Urban Densification using regression analysis
1
作者 Anasua Chakraborty Mitali Yeshwant Joshi +2 位作者 Ahmed Mustafa Mario Cools Jacques Teller 《Geography and Sustainability》 2025年第2期143-156,共14页
The impact of different global and local variables in urban development processes requires a systematic study to fully comprehend the underlying complexities in them.The interplay between such variables is crucial for... The impact of different global and local variables in urban development processes requires a systematic study to fully comprehend the underlying complexities in them.The interplay between such variables is crucial for modelling urban growth to closely reflects reality.Despite extensive research,ambiguity remains about how variations in these input variables influence urban densification.In this study,we conduct a global sensitivity analysis(SA)using a multinomial logistic regression(MNL)model to assess the model’s explanatory and predictive power.We examine the influence of global variables,including spatial resolution,neighborhood size,and density classes,under different input combinations at a provincial scale to understand their impact on densification.Additionally,we perform a stepwise regression to identify the significant explanatory variables that are important for understanding densification in the Brussels Metropolitan Area(BMA).Our results indicate that a finer spatial resolution of 50 m and 100 m,smaller neighborhood size of 5×5 and 3×3,and specific density classes—namely 3(non-built-up,low and high built-up)and 4(non-built-up,low,medium and high built-up)—optimally explain and predict urban densification.In line with the same,the stepwise regression reveals that models with a coarser resolution of 300 m lack significant variables,reflecting a lower explanatory power for densification.This approach aids in identifying optimal and significant global variables with higher explanatory power for understanding and predicting urban densification.Furthermore,these findings are reproducible in a global urban context,offering valuable insights for planners,modelers and geographers in managing future urban growth and minimizing modelling. 展开更多
关键词 Urban densification sensitivity analysis Multinomial logistic regression Stepwise regression
在线阅读 下载PDF
Parameter sensitivity analysis and optimization of carbon and water fluxes in grassland ecosystems based on the Biome-BGCMuSo Model
2
作者 TIAN Yujie JING Changqing +2 位作者 SHAO Yuqing WANG Xiaoyi ZHU Yuhao 《Journal of Mountain Science》 2025年第11期3964-3977,共14页
Accurate quantification of carbon and water fluxes dynamics in arid and semi-arid ecosystems is a critical scientific challenge for regional carbon neutrality assessments and sustainable water resource management.In t... Accurate quantification of carbon and water fluxes dynamics in arid and semi-arid ecosystems is a critical scientific challenge for regional carbon neutrality assessments and sustainable water resource management.In this study,we developed a multi-flux global sensitivity discriminant index(D_(sen))by integrating the Biome-BGCMuSo model with eddy covariance flux observations.This index was combined with a Bayesian optimization algorithm to conduct parameter optimization.The results demonstrated that:(1)Sensitivity analysis identified 13 highly sensitive parameters affecting carbon and water fluxes.Among these,the canopy light extinction coefficient(k)and the fraction of leaf N in Rubisco(FLNR)exhibited significantly higher sensitivity to carbon fluxes(GPP,NEE,Reco;D_(sen)>10%)compared to water flux(ET).This highlights the strong dependence of carbon cycle simulations on vegetation physiological parameters.(2)The Bayesian optimization framework efficiently converged 30 parameter spaces within 50 iterations,markedly improving carbon fluxes simulation accuracy.The Kling-Gupta efficiency(KGE)values for Gross Primary Production(GPP),Net Ecosystem Exchange(NEE),and Total Respiration(Reco)increased by 44.94%,69.23%and 123%,respectively.The optimization prioritized highly sensitive parameters,underscoring the necessity of parameter sensitivity stratification.(3)The optimized model effectively reproduced carbon sink characteristics in mountain meadows during the growing season(cumulative NEE=-375 g C/m^(2)).It revealed synergistic carbon-water fluxes interactions governed by coupled photosynthesis-stomatal pathways and identified substrate supply limitations on heterotrophic respiration.This study proposes a novel multi-flux sensitivity index and an efficient optimization framework,elucidating the coupling mechanisms between vegetation physiological regulation(k,FLNR)and environmental stressors(VPD,SWD)in carbonwater cycles.The methodology offers a practical approach for arid ecosystem model optimization and provides theoretical insights for grassland management through canopy structure regulation and water-use efficiency enhancement. 展开更多
关键词 Carbon flux Water flux Biome-BGCMuSo model sensitivity analysis Bayesian optimization Grassland ecosystems
原文传递
Parameter identification and global sensitivity analysis of Xin'anjiang model using meta-modeling approach 被引量:14
3
作者 Xiao-meng SONG Fan-zhe KONG +2 位作者 Che-sheng ZHAN Ji-wei HAN Xin-hua ZHANG 《Water Science and Engineering》 EI CAS CSCD 2013年第1期1-17,共17页
Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity ana... Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model. 展开更多
关键词 Xin'anjiang model global sensitivity analysis parameter identification meta-modeling approach response surface model
在线阅读 下载PDF
Sensitivity analysis of flowfield modeling parameters upon the flow structure and aerodynamics of an opposing jet over a hypersonic blunt body 被引量:6
4
作者 Jinghui GUO Guiping LIN +1 位作者 Xueqin BU Hao LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第1期161-175,共15页
Implementation of an opposing jet in design of a hypersonic blunt body significantly modifies the external flowfield and yields a considerable reduction in the aerodynamic drag.This study aims to investigate the effec... Implementation of an opposing jet in design of a hypersonic blunt body significantly modifies the external flowfield and yields a considerable reduction in the aerodynamic drag.This study aims to investigate the effects of flowfield modeling parameters of injection and freestream on the flow structure and aerodynamics of a blunt body with an opposing jet in hypersonic flow.Reynolds-Averaged Navier-Stokes(RANS)equations with a Shear Stress Transport(SST)turbulence model are employed to simulate the intricate jet flow interaction.Through utilizing a Non-Intrusive Polynomial Chaos(NIPC)method to construct surrogates,a functional relation is established between input modeling parameters and output flowfield and aerodynamic quantities in concern.Sobol indices in sensitivity analysis are introduced to represent the relative contribution of each parameter.It is found that variations in modeling parameters produce large variations in the flow structure and aerodynamics.The jet-to-freestream total-pressure ratio,jet Mach number,and freestream Mach number are the major contributors to variation in surface pressure,demonstrating an evident location-dependent behavior.The penetration length of injection,reattachment angle of the shear layer,and aerodynamic drag are also most sensitive to the three crucial parameters above.In comparison,the contributions of freestream temperature,freestream density,and jet total temperature are nearly negligible. 展开更多
关键词 AERODYNAMICS FLOW structure HYPERSONIC FLOW Opposing JET sensitivity analysis Surrogate model
原文传递
Sensitivity Analysis,Determination and Optimization of Granite RHT Parameters 被引量:4
5
作者 Hongchao Li Yong Chen +2 位作者 Dianshu Liu Lei Zhao Greg You 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期94-102,共9页
The RHT model has 34 parameters,among which 19 parameters can be obtained by experiments or theoretical calculations and the remaining 15 parameters are difficult to acquire.In this study,firstly,10 Hopkinson impact t... The RHT model has 34 parameters,among which 19 parameters can be obtained by experiments or theoretical calculations and the remaining 15 parameters are difficult to acquire.In this study,firstly,10 Hopkinson impact tests were conducted to acquire the typical stress-strain curves of granite under dynamic loads.Through the sensitivity analysis,it is found that 13 of the 15 difficult-acquired parameters are effective to affect the shape of the stress-strain curve,and the other two parameters have no effect.Following the initial determination of model parameters with reference to the concrete RHT model,a new approach is proposed to optimize the 13 influential parameters through the LS-DYNA numerical simulation and orthogonal experiments.Finally,the determined granite RHT model parameters are verified by the results of Hopkinson impact tests conducted in this study and the bullet penetration test by Wang et al.Both results of the numerical simulations are in a good agreement with the tested results,which validates the suitability of the proposed method to acquire RHT model parameters for granite and the other rocks. 展开更多
关键词 RHT model sensitivity analysis SHPB ORTHOGONAL EXPERIMENT
在线阅读 下载PDF
Quantitative investigation on micro-parameters of cemented paste backfill and its sensitivity analysis 被引量:12
6
作者 LIU Lang ZHOU Peng +2 位作者 FENG Yan ZHANG Bo SONG Ki-il 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期267-276,共10页
The mechanical properties of cemented paste backfill(CPB) depend heavily on its pore structural characteristics and micro-structural changes. In order to explore the variation mechanisms of macro-mechanical characteri... The mechanical properties of cemented paste backfill(CPB) depend heavily on its pore structural characteristics and micro-structural changes. In order to explore the variation mechanisms of macro-mechanical characteristics and micro-structure of CPB. CPB specimens with different mass concentrations prepared from the full tailings of Xianglushan Tungsten Ore were micro-tests. Moreover, acquired pore digital images were processed by using the pores(particles) and cracks analysis system(PCAS), and a sensitivity analysis was performed. The results show that as the mass concentration of CPB increases from 70% to 78%, the porosity, the average pore area and the number of pores drop overall, leading to a decline in the pores opening degree and enhancing the mechanical characteristics. As the mass concentration of CPB increases, the trend of fractal dimension, probability entropy and roundness is reduced, constant and increased, which can result in an enhancement of the uniformity, an unchanged directionality and more round pores. According to the definition of sensitivity, the sensitivities of various micro-parameters were calculated and can be ranked as porosity > average pore area > number of pores > roundness > fractal dimension > probability entropy. 展开更多
关键词 cemented paste backfill mass concentration sensitivity analysis micro-parameters
在线阅读 下载PDF
Multi-parameter Sensitivity Analysis and Application Research in the Robust Optimization Design for Complex Nonlinear System 被引量:4
7
作者 MA Tao ZHANG Weigang +1 位作者 ZHANG Yang TANG Ting 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期55-62,共8页
The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-d... The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-dimensional curve or robust control design is used to find an accurate robust solution. However, there may exist complex interaction between parameters and practical engineering system. With the increase of the number of parameters, it is getting hard to determine high-dimensional curves and robust control methods, thus it's difficult to get the robust design solutions. In this paper, a method of global sensitivity analysis based on divided variables in groups is proposed. By making relevant variables in one group and keeping each other independent among sets of variables, global sensitivity analysis is conducted in grouped variables and the importance of parameters is evaluated by calculating the contribution value of each parameter to the total variance of system response. By ranking the importance of input parameters, relatively important parameters are chosen to conduct robust design analysis of the system. By applying this method to the robust optimization design of a real complex nonlinear system-a vehicle occupant restraint system with multi-parameter, good solution is gained and the response variance of the objective function is reduced to 0.01, which indicates that the robustness of the occupant restraint system is improved in a great degree and the method is effective and valuable for the robust design of complex nonlinear system. This research proposes a new method which can be used to obtain solutions for complex nonlinear system robust design. 展开更多
关键词 complex nonlinear system global sensitivity analysis robust optimization design grouped variables
在线阅读 下载PDF
Sensitivity Analysis of Multi-phase Seepage Parameters Affecting the Clayey Silt Hydrate Reservoir Productivity in the Shenhu Area,South China Sea 被引量:3
8
作者 LI Yaobin XU Tianfu +3 位作者 XIN Xin ZANG Yingqi ZHU Huixing YUAN Yilong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第6期1787-1800,共14页
Natural gas hydrate(NGH)is an important future resource for the 21st century and a strategic resource with potential for commercial development in the third energy transition.It is of great significance to accurately ... Natural gas hydrate(NGH)is an important future resource for the 21st century and a strategic resource with potential for commercial development in the third energy transition.It is of great significance to accurately predict the productivity of hydrate-bearing sediments(HBS).The multi-phase seepage parameters of HBS include permeability,porosity,which is closely related to permeability,and hydrate saturation,which has a direct impact on hydrate content.Existing research has shown that these multi-phase seepage parameters have a great impact on HBS productivity.Permeability directly affects the transmission of pressure-drop and discharge of methane gas,porosity and initial hydrate saturation affect the amount of hydrate decomposition and transmission process of pressure-drop,and also indirectly affect temperature variation of the reservoir.Considering the spatial heterogeneity of multi-phase seepage parameters,a depressurization production model with layered heterogeneity is established based on the clayey silt hydrate reservoir at W11 station in the Shenhu Sea area of the South China Sea.Tough+Hydrate software was used to calculate the production model;the process of gas production and seepage parameter evolution under different multi-phase seepage conditions were obtained.A sensitivity analysis of the parameters affecting the reservoir productivity was conducted so that:(a)a HBS model with layered heterogeneity can better describe the transmission process of pressure and thermal compensation mechanism of hydrate reservoir;(b)considering the multi-phase seepage parameter heterogeneity,the influence degrees of the parameters on HBS productivity were permeability,porosity and initial hydrate saturation,in order from large to small,and the influence of permeability was significantly greater than that of other parameters;(c)the production potential of the clayey silt reservoir should not only be determined by hydrate content or seepage capacity,but also by the comprehensive effect of the two;and(d)time scales need to be considered when studying the effects of changes in multi-phase seepage parameters on HBS productivity. 展开更多
关键词 energy resources natural gas hydrate sensitivity analysis seepage parameters clayey silt reservoir Pearl River Mouth Basin
在线阅读 下载PDF
Sensitivity analysis of the lithospheric magnetic field at satellite altitude:the effects of the inducing field and the shape of the magnetic lithosphere 被引量:1
9
作者 JinSong Du YuKun Li +5 位作者 HouPu Li ChangQing Yuan KangAn Zhao JiangSong Gui Pan Zhang ShaoFeng Bian 《Earth and Planetary Physics》 2025年第3期642-652,共11页
As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal vari... As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal variations in the lithosphere.Traditional approaches either do not consider the non-axial dipolar terms of the inducing field and its radial variation or do so by means of complicated formulae.Moreover,existing methods treat the magnetic lithosphere either as an infinitesimally thin layer or as a radially uniform spherical shell of constant thickness.Here,we present alternative forward formulae that account for an arbitrarily high maximum degree of the inducing field and for a magnetic lithosphere of variable thickness.Our simulations based on these formulae suggest that the satellite magnetic anomaly field is sensitive to the non-axial dipolar terms of the inducing field but not to its radial variation.Therefore,in forward and inverse calculations of satellite magnetic anomaly data,the non-axial dipolar terms of the inducing field should not be ignored.Furthermore,our results show that the satellite magnetic anomaly field is sensitive to variability in the lateral thickness of the magnetized shell.In particular,we show that for a given vertically integrated susceptibility distribution,underestimating the thickness of the magnetic layer overestimates the induced magnetic field.This discovery bridges the greatest part of the alleged gap between the susceptibility values measured from rock samples and the susceptibility values required to match the observed magnetic field signal.We expect the formulae and conclusions of this study to be a valuable tool for the quantitative interpretation of the Earth's global lithospheric magnetic field,through an inverse or forward modelling approach. 展开更多
关键词 lithospheric magnetic field forward calculation spherical harmonic analysis sensitivity analysis satellite magnetism
在线阅读 下载PDF
Influence and sensitivity analysis of thermal parameters on temperature field distribution of active thermal insulated roadway in high temperature mine 被引量:6
10
作者 Weijing Yao Jianyong Pang +1 位作者 Qinyong Ma Happiness Lyimo 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第1期47-63,共17页
To study active heat insulation roadway in high temperature mines,the typical high temperature roadway of−965 m in Zhujidong Coal Mine of Anhui,China,is selected as prototype.The ANSYS numerical simulation method is u... To study active heat insulation roadway in high temperature mines,the typical high temperature roadway of−965 m in Zhujidong Coal Mine of Anhui,China,is selected as prototype.The ANSYS numerical simulation method is used for sensitivity analysis of heat insulation layer with different thermal conductivity and thickness,as well as surrounding rock with different thermal conductivity and temperature on a heat-adjusting zone radius,surrounding rock temperature field and wall temperature.The results show that the heat-adjusting zone radius will entirely be in the right power index relationship to the ventilation time.Decrease in thermal conductivity and increase in thickness of insulation layer can effectively reduce the disturbance of airflow on the surrounding rock temperature,hence,beneficial for decreasing wall temperature.This favourable trend significantly decreases with ventilation time,increase in thermal conductivity and temperature of surrounding rock,heat-adjusting zone radius,surrounding rock temperature field,and wall temperature.Sensitivity analysis shows that the thermal physical properties of surrounding rock determine the temperature distribution of the roadway,hence,temperature of surrounding rock is considered as the most sensitive factor of all influencing factors.For the spray layer,thermal conductivity is more sensitive,compared to thickness.It is concluded that increase in the spray layer thickness is not as beneficial as using low thermal conductivity insulation material.Therefore,roadway preferential consideration should be given to the rocks with low temperature and thermal conductivity.The application of the insulation layer has positive significance for the thermal environment control in mine roadway,however,increase in the layer thickness without restriction has a limited effect on the thermal insulation. 展开更多
关键词 High temperature mine Active thermal insulation Temperature field of surrounding rock Numerical simulation sensitivity analysis
在线阅读 下载PDF
Parameter optimization of the observation system for the South Yellow Sea strong shielding layer based on seismic illumination analysis 被引量:1
11
作者 Yang Jia-Jia Chen Jian-Wen +5 位作者 Huang Fu-Qiang Yan Zhong-Hui Lei Bao-Hua Wang Xiao-Jie Xu Hua-Ning Liu Hong 《Applied Geophysics》 2025年第1期84-98,233,共16页
The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Pale... The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Paleozoic marine carbonate rock strata are directly covered by the Cenozoic terrestrial clastic rock strata,which form a strong shielding layer.To obtain the reflection signals of the strata below the strong shielding layer,a one-way wave equation bidirectional illumination analysis of the main observation system parameters was conducted by analyzing the mechanism of the strong shielding layer.Low-frequency seismic sources are assumed to have a high illumination intensity on the reflection layer below the strong shielding layer.Accordingly,optimized acquisition parameter suggestions were proposed,and reacquisition was performed at the existing survey line locations in the Laoshan Uplift area.The imaging of the newly acquired data in the middle and deep layers was drastically improved.It revealed the unconformity between the Sinian and Cambrian under the strong shielding layer.The study yielded new insights into the tectonic and sedimentary evolution of the Lower Paleozoic in the South Yellow Sea. 展开更多
关键词 illumination analysis acquisition parameters Laoshan Uplift strong shielding layer
在线阅读 下载PDF
Sensitivity analysis for parameters of a monitoring system for steep slopes of open-pit mines 被引量:5
12
作者 HAN Xue HE Man-chao ZHANG Bi 《Mining Science and Technology》 EI CAS 2009年第4期441-445,共5页
Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitori... Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitoring steep slopes of open-pit mines,the MSARMA method was used to establish analytical models for the monitoring system,given various parameter settings based on the description of mechanical monitoring principles.We used this sensitivity analysis to conclude that the setting of the most sensitive location of a mechanical monitoring system should be within a range of 1/5~1/2 of the lower part in a vertical direction of steep slopes,with a rational and feasible range of the dip angle setting between 0°~20°.Given the analytical results of our on-site experiments,we have shown that the parameters determined reflect the stability of steep slopes accurately and effectively.These conclusions provide a basis for the application of a new type of steep slope stability monitoring technology in open-pit mines. 展开更多
关键词 open-pit mine steep slope monitoring system setting parameter analysis
在线阅读 下载PDF
Sensitivity analysis of geomechanical parameters affecting a wellbore stability 被引量:3
13
作者 Abolfazl ABDOLLAHIPOUR Hamid SOLTANIAN +2 位作者 Yaser POURMAZAHERI Ezzatollah KAZEMZADEH Mohammad FATEHI-MARJI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期768-778,共11页
Wellbore stability analysis is a growing concern in oil industries. There are many parameters affecting the stability of a wellbore including geomechanical properties (e.g., elastic modulus, uni-axial compressive stre... Wellbore stability analysis is a growing concern in oil industries. There are many parameters affecting the stability of a wellbore including geomechanical properties (e.g., elastic modulus, uni-axial compressive strength (UCS) and cohesion) and acting forces (e.g., field stresses and mud pressure). Accurate determination of these parameters is time-consuming, expensive and sometimes even impossible. This work offers a systematic sensitivity analysis to quantify the amount of each parameter’s effect on the stability of a wellbore. Maximum wellbore wall displacement is used as a stability factor to study the stability of a wellbore. A 3D finite difference method with Mohr model is used for the numerical modeling. The numerical model is verified against an analytical solution. A dimensionless sensitivity factor is developed in order to compare the results of various parameters in the sensitivity analysis. The results show a different order of importance of parameters based on rock strength. The most sensitive properties for a weak rock are the maximum horizontal stress, internal friction angle and formation pressure, respectively, while for a strong rock, the most sensitive parameters are the maximum horizontal stress, mud pressure and pore pressure, respectively. The amount of error in wellbore stability analysis inflicted by the error in estimation of each parameter was also derived. 展开更多
关键词 wellbore stability sensitivity analysis numerical modeling
在线阅读 下载PDF
Sensitivity analysis of key input parameters in conditional cell transmission model for oversaturated arterials 被引量:2
14
作者 王屏 S.L.JONES +1 位作者 杨群 S.GURUPACKIAM 《Journal of Central South University》 SCIE EI CAS 2013年第6期1772-1780,共9页
A novel conditional cell transmission model (CCTM) is a potential simulation tool because it accommodates all traffic conditions from light condition to oversaturated condition. To test the performance of the CCTM, ... A novel conditional cell transmission model (CCTM) is a potential simulation tool because it accommodates all traffic conditions from light condition to oversaturated condition. To test the performance of the CCTM, a series of experiments for sensitivity analysis were designed and performed for a multilane, two-way, three-signal sample network. Experiment 1 shows that the model is performed in a logical and expected manner with variations in traffic demand with time and direction. Experiment 2 shows when the possibility of the occurrence of a useful gap increases to 60% and 100%, the delays in left rams decrease by 5% and 15%, respectively. In Experiment 3, comparing the possibility of a conditional cell of 0 with 100%, delay of left turn and delay of the entire network were underestimated by 58% and 11%, respectively. Hence, sensitivity analysis demonstrates that by reflecting local drivers' behaviors properly, the CCTM provides an accurate representation of traffic flow in simulating oversaturated traffic conditions. 展开更多
关键词 oversaturation conditional cell transmission model sensitivity analysis DELAY POSSIBILITY
在线阅读 下载PDF
Sensitivity Analysis of Thermal Equilibrium Parameters of MIKE 11 Model:A Case Study of Wuxikou Reservoir in Jiangxi Province of China 被引量:1
15
作者 WANG Qinggai ZHAO Xiaohong +2 位作者 CHEN Kaiqi LIANG Peng LI Shibei 《Chinese Geographical Science》 SCIE CSCD 2013年第5期584-593,共10页
Sensitivity analysis of thermal equilibrium parameters in the reservoir module of MIKE 11 model was conducted for the Wuxikou Reservoir in Jiangxi Province of China in order to apply the module to the environmental im... Sensitivity analysis of thermal equilibrium parameters in the reservoir module of MIKE 11 model was conducted for the Wuxikou Reservoir in Jiangxi Province of China in order to apply the module to the environmental impact assessment to accurately predict water temperature of reservoirs.Results showed that radiation parameter A and evaporation-first parameter were much more sensitive than other parameters.The values of the radiation parameter A ranged from 0.10 to 0.34.The values of evaporation-first parameter varied from 0 to 10.The sensitivity of solar absorption parameters was less than that of evaporation parameter,of which light attenuation values ranged from 0.5 to 0.7,and this parameter would not impact model results if it was more than 2.Constants in Beer's law ranged from 0.2 to 0.7.Radiation parameter B was not more sensitive than evaporation parameter and its reasonable range was higher than 0.48.The fitting curves showed consistent changing tendency for these parameters within the reasonable ranges.Additionally,all the thermal equilibrium parameters had much more important effects on surface water temperature than deep water temperature.Moreover,if no observed data could be obtained,the local empirical value would be used to input to the MIKE 11 model to simulate the changes in the discharged outflow-water temperature qualitatively. 展开更多
关键词 MIKE 11 model thermal equilibrium parameters discharged outflow-water temperature sensitivity analysis temperature difference
在线阅读 下载PDF
Parameters Sensitivity Analysis and Correction for Concrete Damage Plastic Model 被引量:1
16
作者 Yaqin Jiang Pengfei Xu +1 位作者 Chengzhi Wang Dianshu Liu 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期103-108,共6页
In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through... In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through a convenient cube unit test was conducted. The results showed that the peak strength strain was independent of the hardening ductility parameter DH,but affected by AH,BH,and CH. The softening ductility was mainly related to the softening ductility parameter AS,but not affected by the damage ductility exponent BS. In case that the model with default parameters failed to match the AS-controlled damage softening phase,an optimized model with an AS correction was developed. The corrected model with the AS value of 2 matched well with the code model,and exhibited good feasibility in predicting the stress-strain curve of different grades of concrete. Moreover,the practicability of the corrected model was further validated by the conventional triaxial test. The simulated curve exhibited favorable consistence with the trial curve. Therefore,the model with parameter correction could provide a prospective reference for predicting the mechanical properties of concrete. 展开更多
关键词 damage-plastic model concrete sensitivity analysis parameter correction
在线阅读 下载PDF
Characterization of petrophysical and seismic properties for CO_(2)storage with sensitivity analysis 被引量:1
17
作者 Yan-Jiao Dong Yi Shen +4 位作者 Kai Guo Xiao-Qin Wu Qiang Mao Wen-Yue Sun Zhi-Qiang Wang 《Petroleum Science》 2025年第1期193-209,共17页
Saline aquifers are considered as highly favored reservoirs for CO_(2)sequestration due to their favorable properties.Understanding the impact of saline aquifer properties on the migration and distribution of CO_(2)pl... Saline aquifers are considered as highly favored reservoirs for CO_(2)sequestration due to their favorable properties.Understanding the impact of saline aquifer properties on the migration and distribution of CO_(2)plume is crucial.This study focuses on four key parameters-permeability,porosity,formation pressure,and temperature-to characterize the reservoir and analyse the petrophysical and elastic response of CO_(2).First,we performed reservoir simulations to simulate CO_(2)saturation,using multiple sets of these four parameters to examine their significance on CO_(2)saturation and the plume migration speed.Subsequently,the effect of these parameters on the elastic properties is tested using rock physics theory.We established a relationship of compressional wave velocity(V_(p))and quality factor(Q_(p))with the four key parameters,and conducted a sensitivity analysis to test their sensitivity to V_(p) and Q_(p).Finally,we utilized visco-acoustic wave equation simulated time-lapse seismic data based on the computed V_(p) and Q_(p) models,and analysed the impact of CO_(2) saturation changes on seismic data.As for the above nu-merical simulations and analysis,we conducted sensitivity analysis using both homogeneous and heterogeneous models.Consistent results are found between homogeneous and heterogeneous models.The permeability is the most sensitive parameter to the CO_(2)saturation,while porosity emerges as the primary factor affecting both Q_(p) and V_(p).Both Q_(p) and V_(p) increase with the porosity,which contradicts the observations in gas reservoirs.The seismic simulations highlight significant variations in the seismic response to different parameters.We provided analysis for these observations,which serves as a valuable reference for comprehensive CO_(2)integrity analysis,time-lapse monitoring,injection planning and site selection. 展开更多
关键词 CO_(2)storage Time-lapse seismic CO_(2)plume sensitivity analysis Rock physics Reservoir simulation Saline aquifer
原文传递
Sensitivity analysis of influencing parameters in cavern stability 被引量:9
18
作者 Abolfazl Abdollahipour Reza Rahmannejad 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期707-710,共4页
In order to analyze the stability of the underground rock structures,knowing the sensitivity of geomechanical parameters is important.To investigate the priority of these geomechanical properties in the stability of c... In order to analyze the stability of the underground rock structures,knowing the sensitivity of geomechanical parameters is important.To investigate the priority of these geomechanical properties in the stability of cavern,a sensitivity analysis has been performed on a single cavern in various rock mass qualities according to RMR using Phase 2.The stability of cavern has been studied by investigating the side wall deformation.Results showed that most sensitive properties are coefficient of lateral stress and modulus of deformation.Also parameters of Hoek-Brown criterion and r c have no sensitivity when cavern is in a perfect elastic state.But in an elasto-plastic state,parameters of Hoek-Brown criterion and r c affect the deformability;such effect becomes more remarkable with increasing plastic area.Other parameters have different sensitivities concerning rock mass quality(RMR).Results have been used to propose the best set of parameters for study on prediction of sidewall displacement. 展开更多
关键词 sensitivity analysis Cavern stability Numerical methods RMR rating system
在线阅读 下载PDF
Sensitivity Analysis of Parameters in Water Quality Models and Water Environment Management 被引量:2
19
作者 Dongjun Liu Zhihong Zou 《Journal of Environmental Protection》 2012年第8期863-870,共8页
The impacts of changes of various parameters and stochastic factors on water quality models were studied. The impact of deviation of the degradation coefficient on the model results was investigated. The degradation c... The impacts of changes of various parameters and stochastic factors on water quality models were studied. The impact of deviation of the degradation coefficient on the model results was investigated. The degradation coefficient was decomposed into the exact part and the deviation part, and the relationship between the errors of the water quality model results and the deviation of the degradation coefficient was derived. The impact of changes in the initial concentration on the model results was discussed. A linear relationship between the initial concentration changes and errors in the model results was obtained, and relevant recommendations to the water quality management were made based on the results. The impacts of stochastic factors in the water environment on the water quality model were analyzed. A variety of random factors which may affect the water quality conditions were attributed to one stochastic factor and it was further assumed to be the white noise. The solutions to the water quality model including the stochastic process were obtained by solving the stochastic differential equation. Simulation results showed that the decay trend of the concentration of the solute would not be changed, and that the results would fluctuate around the expectation centered at each corresponding displacement 展开更多
关键词 WATER QUALITY Model Reclaimed WATER sensitivity analysis DEGRADATION COEFFICIENT STOCHASTIC FACTORS
暂未订购
Second-Order Adjoint Sensitivity Analysis Methodology for Computing Exactly Response Sensitivities to Uncertain Parameters and Boundaries of Linear Systems: Mathematical Framework 被引量:3
20
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2020年第3期329-354,共26页
This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2<sup>nd</sup>-CASAM)” for the efficient and exact computation of 1<sup>st</sup>- and 2<sup>... This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2<sup>nd</sup>-CASAM)” for the efficient and exact computation of 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities to uncertain parameters and domain boundaries of linear systems. The model’s response (<em>i.e.</em>, model result of interest) is a generic nonlinear function of the model’s forward and adjoint state functions, and also depends on the imprecisely known boundaries and model parameters. In the practically important particular case when the response is a scalar-valued functional of the forward and adjoint state functions characterizing a model comprising N parameters, the 2<sup>nd</sup>-CASAM requires a single large-scale computation using the First-Level Adjoint Sensitivity System (1<sup>st</sup>-LASS) for obtaining all of the first-order response sensitivities, and at most N large-scale computations using the Second-Level Adjoint Sensitivity System (2<sup>nd</sup>-LASS) for obtaining exactly all of the second-order response sensitivities. In contradistinction, forward other methods would require (<em>N</em>2/2 + 3 <em>N</em>/2) large-scale computations for obtaining all of the first- and second-order sensitivities. This work also shows that constructing and solving the 2<sup>nd</sup>-LASS requires very little additional effort beyond the construction of the 1<sup>st</sup>-LASS needed for computing the first-order sensitivities. Solving the equations underlying the 1<sup>st</sup>-LASS and 2<sup>nd</sup>-LASS requires the same computational solvers as needed for solving (<em>i.e.</em>, “inverting”) either the forward or the adjoint linear operators underlying the initial model. Therefore, the same computer software and “solvers” used for solving the original system of equations can also be used for solving the 1<sup>st</sup>-LASS and the 2<sup>nd</sup>-LASS. Since neither the 1<sup>st</sup>-LASS nor the 2<sup>nd</sup>-LASS involves any differentials of the operators underlying the original system, the 1<sup>st</sup>-LASS is designated as a “<u>first-level</u>” (as opposed to a “first-order”) adjoint sensitivity system, while the 2<sup>nd</sup>-LASS is designated as a “<u>second-level</u>” (rather than a “second-order”) adjoint sensitivity system. Mixed second-order response sensitivities involving boundary parameters may arise from all source terms of the 2<sup>nd</sup>-LASS that involve the imprecisely known boundary parameters. Notably, the 2<sup>nd</sup>-LASS encompasses an automatic, inherent, and independent “solution verification” mechanism of the correctness and accuracy of the 2nd-level adjoint functions needed for the efficient and exact computation of the second-order sensitivities. 展开更多
关键词 Second-Order Comprehensive Adjoint sensitivity analysis Methodology (2nd-CASAM) First-Level Adjoint sensitivity System (1st-LASS) Second-Level Adjoint sensitivity System (2nd-LASS) Operator-Type Response Second-Order Sensitivities to Uncertain Model Boundaries Second-Order Sensitivities to Uncertain Model parameters
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部