This study describes a classification methodology based on support vector machines(SVMs),which offer superior classification performance for fault diagnosis in chemical process engineering.The method incorporates an e...This study describes a classification methodology based on support vector machines(SVMs),which offer superior classification performance for fault diagnosis in chemical process engineering.The method incorporates an efficient parameter tuning procedure(based on minimization of radius/margin bound for SVM's leave-one-out errors)into a multi-class classification strategy using a fuzzy decision factor,which is named fuzzy support vector machine(FSVM).The datasets generated from the Tennessee Eastman process(TEP)simulator were used to evaluate the clas-sification performance.To decrease the negative influence of the auto-correlated and irrelevant variables,a key vari-able identification procedure using recursive feature elimination,based on the SVM is implemented,with time lags incorporated,before every classifier is trained,and the number of relatively important variables to every classifier is basically determined by 10-fold cross-validation.Performance comparisons are implemented among several kinds of multi-class decision machines,by which the effectiveness of the proposed approach is proved.展开更多
High-speed pick-and-place parallel robot is a system where the inertia imposed on the motor shafts is real-time changing with the system configurations.High quality of computer control with proper controller parameter...High-speed pick-and-place parallel robot is a system where the inertia imposed on the motor shafts is real-time changing with the system configurations.High quality of computer control with proper controller parameters is conducive to overcoming this problem and has a significant effect on reducing the robot's tracking error.By taking Delta robot as an example,a method for parameter tuning of the fixed gain motion controller is presented.Having identifying the parameters of the servo system in the frequency domain by the sinusoidal excitation,the PD+feedforward control strategy is proposed to adapt to the varying inertia loads,allowing the controller parameters to be tuned by minimizing the mean square tracking error along a typical trajectory.A set of optimum parameters is obtained through computer simulations and the effectiveness of the proposed approach is validated by experiments on a real prototype machine.Let the traveling plate undergoes a specific trajectory and the results show that the tracking error can be reduced by at least 50%in comparison with the conventional auto-tuning and Z-N methods.The proposed approach is a whole workspace optimization and can be applied to the parameter tuning of fixed gain motion controllers.展开更多
In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dyn...In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal(using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.展开更多
The high-purity distillation column system is strongly nonlinear and coupled,which makes it difficult to control.Active disturbance rejection control(ADRC)has been widely used in distillation systems,but it has limita...The high-purity distillation column system is strongly nonlinear and coupled,which makes it difficult to control.Active disturbance rejection control(ADRC)has been widely used in distillation systems,but it has limitations in controlling distillation systems with large time delays since ADRC employs ESO and feedback control law to estimate the total disturbance of the system without considering the large time delays.This paper designs a proportion integral-type active disturbance rejection generalized predictive control(PI-ADRGPC)algorithm to control the distillation column system with large time delay.It replaces the PD controller in ADRC with a proportion integral-type generalized predictive control(PI-GPC),thereby improving the performance of control systems with large time delays.Since the proposed controller has many parameters and is difficult to tune,this paper proposes to use the grey wolf optimization(GWO)to tune these parameters,whose structure can also be used by other intelligent optimization algorithms.The performance of GWO tuned PI-ADRGPC is compared with the control performance of GWO tuned ADRC method,multi-verse optimizer(MVO)tuned PI-ADRGPC and MVO tuned ADRC.The simulation results show that the proposed strategy can track reference well and has a good disturbance rejection performance.展开更多
As conventional synchronous generators are replaced by large-scale converter-interfaced renewa-ble-energy sources(RESs),the electric power grid en-counters the challenge of low rotational inertia.Conse-quently,system ...As conventional synchronous generators are replaced by large-scale converter-interfaced renewa-ble-energy sources(RESs),the electric power grid en-counters the challenge of low rotational inertia.Conse-quently,system frequency deviation is exacerbated and system instability may occur when the frequency deviates beyond the acceptable range.To mitigate this effect,this study proposes a virtual inertia control(VIC)strategy based on a fractional-order derivative and controller parameter-tuning method.The tuning method uses the stability boundary locus and provides a stability criterion for identifying the stability region in the parameter space.The controller parameters are then optimized within the identified stability region to suppress frequency deviation and enhance system robustness.The proposed controller and tuning method is applied to a battery energy-storage system(BESS)in a low-inertia power system with the integration of RESs.Time-domain simulations are carried out to verify the stability region and compare the per-formance of the optimized proposed controller to that of the traditional integral-order controller.The simulation results show that the stability-analysis method is effective and that the fractional-order VIC,tuned with the pro-posed method,outperforms the traditional method in both frequency-regulation performance and parametric robustness.展开更多
Active disturbance rejection controller (ADRC) has good performance in induction motor (IM) control system, but controller parameter is difficult to tune. A method of tuning ADRC parameter by time scale is analyzed. T...Active disturbance rejection controller (ADRC) has good performance in induction motor (IM) control system, but controller parameter is difficult to tune. A method of tuning ADRC parameter by time scale is analyzed. The IM time scale is obtained by theoretical analysis. Combining the relations between scale time and ADRC parameters, ADRC parameter tuning in IM vector control based stator flux oriented is obtained. This parameter tuning method is validated by simulations and it provides a new technique for tuning of ADRC parameters of IM.展开更多
Based on the evaluation of dynamic performance for feed drives in machine tools, this paper presents a two-stage tuning method of servo parameters. In the first stage, the evaluation of dynamic performance, parameter ...Based on the evaluation of dynamic performance for feed drives in machine tools, this paper presents a two-stage tuning method of servo parameters. In the first stage, the evaluation of dynamic performance, parameter tuning and optimization on a mechatronic integrated system simulation platform of feed drives are performed. As a result, a servo parameter combination is acquired. In the second stage, the servo parameter combination from the first stage is set and tuned further in a real machine tool whose dynamic performance is measured and evaluated using the cross grid encoder developed by Heidenhain GmbH. A case study shows that this method simplifies the test process effectively and results in a good dynamic performance in a real machine tool.展开更多
To improve welding quality, a method of proportional-integral-differential (PlD) parameters tuning based on pulsed gas metal arc welding (P-GMAW) control was put forward. Aiming at the request of dynamic responsiv...To improve welding quality, a method of proportional-integral-differential (PlD) parameters tuning based on pulsed gas metal arc welding (P-GMAW) control was put forward. Aiming at the request of dynamic responsiveness of PGMA W constant current control, a self-developed welding waveform wavelet analyzer was employed. By tuning the proportional parameter, integration time and differential time in sequence, the optimal PID parameters could be achieved. The results showed that, due to the PID parameters tuned by this method, the welding process was stable and the weld bead appearance was nice. The requirement of dynamic responsiveness of P-GMAW constant current control was fully met.展开更多
By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement,information communication,and other fields,the digital DC distribution network can efficiently and ...By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement,information communication,and other fields,the digital DC distribution network can efficiently and reliably access DistributedGenerator(DG)and Energy Storage Systems(ESS),exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play(PnP)operations.However,during device plug-in and-out processes,improper systemparametersmay lead to small-signal stability issues.Therefore,before executing PnP operations,conducting stability analysis and adjusting parameters swiftly is crucial.This study introduces a four-stage strategy for parameter optimization to enhance systemstability efficiently.In the first stage,state-of-the-art technologies in measurement and communication are utilized to correct model parameters.Then,a novel indicator is adopted to identify the key parameters that influence stability in the second stage.Moreover,in the third stage,a local-parameter-tuning strategy,which leverages rapid parameter boundary calculations as a more efficient alternative to plotting root loci,is used to tune the selected parameters.Considering that the local-parameter-tuning strategy may fail due to some operating parameters being limited in adjustment,a multiparameter-tuning strategy based on the particle swarm optimization(PSO)is proposed to comprehensively adjust the dominant parameters to improve the stability margin of the system.Lastly,system stability is reassessed in the fourth stage.The proposed parameter-optimization strategy’s effectiveness has been validated through eigenvalue analysis and nonlinear time-domain simulations.展开更多
Model predictive control(MPC)is a model-based optimal control strategy widely used in robot systems.In this work,the MPC controller tuning problem for the path tracking of the wheeled mobile robot is studied and a nov...Model predictive control(MPC)is a model-based optimal control strategy widely used in robot systems.In this work,the MPC controller tuning problem for the path tracking of the wheeled mobile robot is studied and a novel self-tuning approach is developed.First,two novel path tracking performance indices,i.e.,steadystate time ratio and steady-state distance ratio are proposed to more accurately reflect the control performance.Second,the mapping relationship between the proposed indices and the MPC parameters is established based on machine learning technique,and then a novel controller structure which can automatically tune the control parameters online is further designed.Finally,experimental verification with an actual wheeled mobile robot is conducted,which shows that the proposed method could outperform the existing method via achieving significant improvement in the rapidity,accuracy and adaptability of the robot path tracking.展开更多
a new strategy combining an expert system and improved genetic algorithms is presented for tuning proportional-integral-derivative (PID) parameters for petrochemical processes. This retains the advantages of genetic...a new strategy combining an expert system and improved genetic algorithms is presented for tuning proportional-integral-derivative (PID) parameters for petrochemical processes. This retains the advantages of genetic algorithms, namely rapid convergence and attainment of the global optimum. Utilization of an orthogonal experiment method solves the determination of the genetic factors. Combination with an expert system can make best use of the actual experience of the plant operators. Simulation results of typical process systems examples show a good control performance and robustness.展开更多
This study provides an in-depth comparative evaluation of landslide susceptibility using two distinct spatial units:and slope units(SUs)and hydrological response units(HRUs),within Goesan County,South Korea.Leveraging...This study provides an in-depth comparative evaluation of landslide susceptibility using two distinct spatial units:and slope units(SUs)and hydrological response units(HRUs),within Goesan County,South Korea.Leveraging the capabilities of the extreme gradient boosting(XGB)algorithm combined with Shapley Additive Explanations(SHAP),this work assesses the precision and clarity with which each unit predicts areas vulnerable to landslides.SUs focus on the geomorphological features like ridges and valleys,focusing on slope stability and landslide triggers.Conversely,HRUs are established based on a variety of hydrological factors,including land cover,soil type and slope gradients,to encapsulate the dynamic water processes of the region.The methodological framework includes the systematic gathering,preparation and analysis of data,ranging from historical landslide occurrences to topographical and environmental variables like elevation,slope angle and land curvature etc.The XGB algorithm used to construct the Landslide Susceptibility Model(LSM)was combined with SHAP for model interpretation and the results were evaluated using Random Cross-validation(RCV)to ensure accuracy and reliability.To ensure optimal model performance,the XGB algorithm’s hyperparameters were tuned using Differential Evolution,considering multicollinearity-free variables.The results show that SU and HRU are effective for LSM,but their effectiveness varies depending on landscape characteristics.The XGB algorithm demonstrates strong predictive power and SHAP enhances model transparency of the influential variables involved.This work underscores the importance of selecting appropriate assessment units tailored to specific landscape characteristics for accurate LSM.The integration of advanced machine learning techniques with interpretative tools offers a robust framework for landslide susceptibility assessment,improving both predictive capabilities and model interpretability.Future research should integrate broader data sets and explore hybrid analytical models to strengthen the generalizability of these findings across varied geographical settings.展开更多
The study of exoskeletons has been a popular topic worldwide.However,there is still a long way to go before exoskeletons can be widely used.One of the major challenges is control,and there is no specific research tren...The study of exoskeletons has been a popular topic worldwide.However,there is still a long way to go before exoskeletons can be widely used.One of the major challenges is control,and there is no specific research trend for controlling exoskeletons.In this paper,we propose a novel exoskeleton control strategy that combines Active Disturbance Rejection Control(ADRC)and Deep Reinforcement Learning(DRL).The dynamic model of the exoskeleton is constructed,followed with the design of the ADRC.To automatically adjust the control parameters of the ADRC,the Twin-Delayed Deep Deterministic Policy Gradient(TD3)is utilized.Then a reward function is defined in terms of the joint angle,angular velocity,and their errors to the desired values,to maximize the accuracy of the joint angle.In the simulations and experiments,a conventional ADRC,and ADRC based on Genetic Algorithm(GA)and Particle Swarm Optimization(PSO)were carried out for comparison with the proposed control method.The results of the tests show that TD3-ADRC has a rapid response,small overshoot,and low Mean Absolute Error(MAE)and Root Mean Square Error(RMSE)followed with the desired,demonstrating the superiority of the proposed control method for the self-learning control of exoskeleton.展开更多
The text classification process has been extensively investigated in various languages,especially English.Text classification models are vital in several Natural Language Processing(NLP)applications.The Arabic languag...The text classification process has been extensively investigated in various languages,especially English.Text classification models are vital in several Natural Language Processing(NLP)applications.The Arabic language has a lot of significance.For instance,it is the fourth mostly-used language on the internet and the sixth official language of theUnitedNations.However,there are few studies on the text classification process in Arabic.A few text classification studies have been published earlier in the Arabic language.In general,researchers face two challenges in the Arabic text classification process:low accuracy and high dimensionality of the features.In this study,an Automated Arabic Text Classification using Hyperparameter Tuned Hybrid Deep Learning(AATC-HTHDL)model is proposed.The major goal of the proposed AATC-HTHDL method is to identify different class labels for the Arabic text.The first step in the proposed model is to pre-process the input data to transform it into a useful format.The Term Frequency-Inverse Document Frequency(TF-IDF)model is applied to extract the feature vectors.Next,the Convolutional Neural Network with Recurrent Neural Network(CRNN)model is utilized to classify the Arabic text.In the final stage,the Crow Search Algorithm(CSA)is applied to fine-tune the CRNN model’s hyperparameters,showing the work’s novelty.The proposed AATCHTHDL model was experimentally validated under different parameters and the outcomes established the supremacy of the proposed AATC-HTHDL model over other approaches.展开更多
The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of th...The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of the parameter selection of VAV MPC controller which is difficult to make the system have a desired response,a novel tuning method based on machine learning and improved particle swarm optimization(PSO)is proposed.In this method,the relationship between MPC controller parameters and time domain performance indices is established via machine learning.Then the PSO is used to optimize MPC controller parameters to get better performance in terms of time domain indices.In addition,the PSO algorithm is further modified under the principle of population attenuation and event triggering to tune parameters of MPC and reduce the computation time of tuning method.Finally,the effectiveness of the proposed method is validated via a hardware-in-the-loop VAV system.展开更多
Updating the velocity in particle swarm optimization (PSO) consists of three terms: the inertia term, the cognitive term and the social term. The balance of these terms determines the balance of the global and local s...Updating the velocity in particle swarm optimization (PSO) consists of three terms: the inertia term, the cognitive term and the social term. The balance of these terms determines the balance of the global and local search abilities, and therefore the performance of PSO. In this work, an adaptive parallel PSO algorithm, which is based on the dynamic exchange of control parameters between adjacent swarms, has been developed. The proposed PSO algorithm enables us to adaptively optimize inertia factors, learning factors and swarm activity. By performing simulations of a search for the global minimum of a benchmark multimodal function, we have found that the proposed PSO successfully provides appropriate control parameter values, and thus good global optimization performance.展开更多
Artificial bee colony (ABC) algorithm is one of the popular swarm intelligence algorithms. ABC has been developed by being inspired foraging and waggle dance behaviors of real bee colonies in 2005. Since its invention...Artificial bee colony (ABC) algorithm is one of the popular swarm intelligence algorithms. ABC has been developed by being inspired foraging and waggle dance behaviors of real bee colonies in 2005. Since its invention in 2005, many ABC models have been proposed in order to solve different optimization problems. In all the models proposed, there are only one scout bee and a constant limit value used as control parameters for the bee population. In this study, the performance of ABC algorithm on the numeric optimization problems was analyzed by using different number of scout bees and limit values. Experimental results show that the results obtained by using more than one scout bee and different limit values, are better than the results of basic ABC. Therefore, the control parameters of the basic ABC should be tuned according to given class of optimization problems. In this paper, we propose reasonable value ranges of control parameters for the basic ABC in order to obtain better results on the numeric optimization problems.展开更多
To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (I...To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (IMC-PID) controller was proposed for the first order plus time-delay (FOPTD) process and the second order plus time-delay (SOPTD) process. By approximating the time-delay term of the process model with the first-order Taylor series, the expressions for IMC-PID controller parameters were derived, and they had only one adjustable parameter 2 which was directly related to the dynamic performance and robustness of the system. Moreover, an analytical approach of selecting 2 was given based on the maximum sensitivity Ms. Then, the robust tuning of the system could be achieved according to the value of Ms. In addition, the proposed method could be extended to the integrator plus time-delay (IPTD) process and the first order delay integrating (FODI) process. Simulation studies were carried out on various processes with time-delay, and the results show that the proposed method could provide a better dynamic performance of both the set-point tracking and disturbance rejection and robustness against parameters perturbation.展开更多
Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters...Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters on generalization error, a new approach with two steps is proposed for selecting SVR parameters, First the kernel function and SVM parameters are optimized roughly through genetic algorithm, then the kernel parameter is finely adjusted by local linear search, This approach has been successfully applied to the prediction model of the sulfur content in hot metal. The experiment results show that the proposed approach can yield better generalization performance of SVR than other methods,展开更多
In this paper conventional stochastic resonance (CSR) is realized by adding the noise intensity. This demonstrates that tuning the system parameters with fixed noise can make the noise play a constructive role and r...In this paper conventional stochastic resonance (CSR) is realized by adding the noise intensity. This demonstrates that tuning the system parameters with fixed noise can make the noise play a constructive role and realize parameter- induced stochastic resonance (PSR). PSR can be interpreted as changing the intrinsic characteristic of the dynamical system to yield the cooperative effect between the stochastic-subjected nonlinear system and the external periodic force. This can be realized at any noise intensity, which greatly differs from CSR that is realized under the condition of the initial noise intensity not greater than the resonance level. Moreover, it is proved that PSR is different from the optimization of system parameters.展开更多
基金Supported by the Special Funds for Major State Basic Research Program of China (973 Program,No.2002CB312200)the Na-tional Natural Science Foundation of China (No.60574019,No.60474045)+1 种基金the Key Technologies R&D Program of Zhejiang Province (No.2005C21087)the Academician Foundation of Zhejiang Province (No.2005A1001-13).
文摘This study describes a classification methodology based on support vector machines(SVMs),which offer superior classification performance for fault diagnosis in chemical process engineering.The method incorporates an efficient parameter tuning procedure(based on minimization of radius/margin bound for SVM's leave-one-out errors)into a multi-class classification strategy using a fuzzy decision factor,which is named fuzzy support vector machine(FSVM).The datasets generated from the Tennessee Eastman process(TEP)simulator were used to evaluate the clas-sification performance.To decrease the negative influence of the auto-correlated and irrelevant variables,a key vari-able identification procedure using recursive feature elimination,based on the SVM is implemented,with time lags incorporated,before every classifier is trained,and the number of relatively important variables to every classifier is basically determined by 10-fold cross-validation.Performance comparisons are implemented among several kinds of multi-class decision machines,by which the effectiveness of the proposed approach is proved.
基金Supported by National Natural Science Foundation of China(Grant Nos.51305293,51135008)
文摘High-speed pick-and-place parallel robot is a system where the inertia imposed on the motor shafts is real-time changing with the system configurations.High quality of computer control with proper controller parameters is conducive to overcoming this problem and has a significant effect on reducing the robot's tracking error.By taking Delta robot as an example,a method for parameter tuning of the fixed gain motion controller is presented.Having identifying the parameters of the servo system in the frequency domain by the sinusoidal excitation,the PD+feedforward control strategy is proposed to adapt to the varying inertia loads,allowing the controller parameters to be tuned by minimizing the mean square tracking error along a typical trajectory.A set of optimum parameters is obtained through computer simulations and the effectiveness of the proposed approach is validated by experiments on a real prototype machine.Let the traveling plate undergoes a specific trajectory and the results show that the tracking error can be reduced by at least 50%in comparison with the conventional auto-tuning and Z-N methods.The proposed approach is a whole workspace optimization and can be applied to the parameter tuning of fixed gain motion controllers.
基金Supported by National Natural Science Foundation of China(Grant No.51375045)the State Key Laboratory Program(Grant No.GZKF-201214)
文摘In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal(using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.
基金funded by the National Natural Science Foundation of China(61973175,62073177 and 61973172)South African National Research Foundation(132797)+2 种基金South African National Research Foundation Incentive(114911)Eskom Tertiary Education Support Programme Grant of South AfricaTianjin Research Innovation Project for Postgraduate Students(2021YJSB018,2020YJSB003)。
文摘The high-purity distillation column system is strongly nonlinear and coupled,which makes it difficult to control.Active disturbance rejection control(ADRC)has been widely used in distillation systems,but it has limitations in controlling distillation systems with large time delays since ADRC employs ESO and feedback control law to estimate the total disturbance of the system without considering the large time delays.This paper designs a proportion integral-type active disturbance rejection generalized predictive control(PI-ADRGPC)algorithm to control the distillation column system with large time delay.It replaces the PD controller in ADRC with a proportion integral-type generalized predictive control(PI-GPC),thereby improving the performance of control systems with large time delays.Since the proposed controller has many parameters and is difficult to tune,this paper proposes to use the grey wolf optimization(GWO)to tune these parameters,whose structure can also be used by other intelligent optimization algorithms.The performance of GWO tuned PI-ADRGPC is compared with the control performance of GWO tuned ADRC method,multi-verse optimizer(MVO)tuned PI-ADRGPC and MVO tuned ADRC.The simulation results show that the proposed strategy can track reference well and has a good disturbance rejection performance.
基金supported by the Science and Technology Project of State Grid Corporation of China(No.5419-202199551A-0-5-ZN)the Joint Funds of the National Natural Science Foundation of China(No.U22A6007)the National Excellent Youth Science Fund Project of National Natural Science Foundation of China(No.52222703).
文摘As conventional synchronous generators are replaced by large-scale converter-interfaced renewa-ble-energy sources(RESs),the electric power grid en-counters the challenge of low rotational inertia.Conse-quently,system frequency deviation is exacerbated and system instability may occur when the frequency deviates beyond the acceptable range.To mitigate this effect,this study proposes a virtual inertia control(VIC)strategy based on a fractional-order derivative and controller parameter-tuning method.The tuning method uses the stability boundary locus and provides a stability criterion for identifying the stability region in the parameter space.The controller parameters are then optimized within the identified stability region to suppress frequency deviation and enhance system robustness.The proposed controller and tuning method is applied to a battery energy-storage system(BESS)in a low-inertia power system with the integration of RESs.Time-domain simulations are carried out to verify the stability region and compare the per-formance of the optimized proposed controller to that of the traditional integral-order controller.The simulation results show that the stability-analysis method is effective and that the fractional-order VIC,tuned with the pro-posed method,outperforms the traditional method in both frequency-regulation performance and parametric robustness.
文摘Active disturbance rejection controller (ADRC) has good performance in induction motor (IM) control system, but controller parameter is difficult to tune. A method of tuning ADRC parameter by time scale is analyzed. The IM time scale is obtained by theoretical analysis. Combining the relations between scale time and ADRC parameters, ADRC parameter tuning in IM vector control based stator flux oriented is obtained. This parameter tuning method is validated by simulations and it provides a new technique for tuning of ADRC parameters of IM.
基金This paper is supported by the Major State Basic Research Development Program of China under Grant No2005CB724101the Key Items Program of International Science and Technology Cooperation of China under Grant No2003DF000021
文摘Based on the evaluation of dynamic performance for feed drives in machine tools, this paper presents a two-stage tuning method of servo parameters. In the first stage, the evaluation of dynamic performance, parameter tuning and optimization on a mechatronic integrated system simulation platform of feed drives are performed. As a result, a servo parameter combination is acquired. In the second stage, the servo parameter combination from the first stage is set and tuned further in a real machine tool whose dynamic performance is measured and evaluated using the cross grid encoder developed by Heidenhain GmbH. A case study shows that this method simplifies the test process effectively and results in a good dynamic performance in a real machine tool.
文摘To improve welding quality, a method of proportional-integral-differential (PlD) parameters tuning based on pulsed gas metal arc welding (P-GMAW) control was put forward. Aiming at the request of dynamic responsiveness of PGMA W constant current control, a self-developed welding waveform wavelet analyzer was employed. By tuning the proportional parameter, integration time and differential time in sequence, the optimal PID parameters could be achieved. The results showed that, due to the PID parameters tuned by this method, the welding process was stable and the weld bead appearance was nice. The requirement of dynamic responsiveness of P-GMAW constant current control was fully met.
基金supported by State Grid Information and Telecommunication Group Scientific and Technological Innovation Project“Research on Power Digital Space Technology System and Key Technologies”(Program No.SGIT0000XMJS2310456).
文摘By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement,information communication,and other fields,the digital DC distribution network can efficiently and reliably access DistributedGenerator(DG)and Energy Storage Systems(ESS),exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play(PnP)operations.However,during device plug-in and-out processes,improper systemparametersmay lead to small-signal stability issues.Therefore,before executing PnP operations,conducting stability analysis and adjusting parameters swiftly is crucial.This study introduces a four-stage strategy for parameter optimization to enhance systemstability efficiently.In the first stage,state-of-the-art technologies in measurement and communication are utilized to correct model parameters.Then,a novel indicator is adopted to identify the key parameters that influence stability in the second stage.Moreover,in the third stage,a local-parameter-tuning strategy,which leverages rapid parameter boundary calculations as a more efficient alternative to plotting root loci,is used to tune the selected parameters.Considering that the local-parameter-tuning strategy may fail due to some operating parameters being limited in adjustment,a multiparameter-tuning strategy based on the particle swarm optimization(PSO)is proposed to comprehensively adjust the dominant parameters to improve the stability margin of the system.Lastly,system stability is reassessed in the fourth stage.The proposed parameter-optimization strategy’s effectiveness has been validated through eigenvalue analysis and nonlinear time-domain simulations.
基金the National Natural Science Foundation of China(No.61903291)the Key Research and Development Program of Shaanxi Province(No.2022NY-094)。
文摘Model predictive control(MPC)is a model-based optimal control strategy widely used in robot systems.In this work,the MPC controller tuning problem for the path tracking of the wheeled mobile robot is studied and a novel self-tuning approach is developed.First,two novel path tracking performance indices,i.e.,steadystate time ratio and steady-state distance ratio are proposed to more accurately reflect the control performance.Second,the mapping relationship between the proposed indices and the MPC parameters is established based on machine learning technique,and then a novel controller structure which can automatically tune the control parameters online is further designed.Finally,experimental verification with an actual wheeled mobile robot is conducted,which shows that the proposed method could outperform the existing method via achieving significant improvement in the rapidity,accuracy and adaptability of the robot path tracking.
文摘a new strategy combining an expert system and improved genetic algorithms is presented for tuning proportional-integral-derivative (PID) parameters for petrochemical processes. This retains the advantages of genetic algorithms, namely rapid convergence and attainment of the global optimum. Utilization of an orthogonal experiment method solves the determination of the genetic factors. Combination with an expert system can make best use of the actual experience of the plant operators. Simulation results of typical process systems examples show a good control performance and robustness.
基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(RS-2023-00222536).
文摘This study provides an in-depth comparative evaluation of landslide susceptibility using two distinct spatial units:and slope units(SUs)and hydrological response units(HRUs),within Goesan County,South Korea.Leveraging the capabilities of the extreme gradient boosting(XGB)algorithm combined with Shapley Additive Explanations(SHAP),this work assesses the precision and clarity with which each unit predicts areas vulnerable to landslides.SUs focus on the geomorphological features like ridges and valleys,focusing on slope stability and landslide triggers.Conversely,HRUs are established based on a variety of hydrological factors,including land cover,soil type and slope gradients,to encapsulate the dynamic water processes of the region.The methodological framework includes the systematic gathering,preparation and analysis of data,ranging from historical landslide occurrences to topographical and environmental variables like elevation,slope angle and land curvature etc.The XGB algorithm used to construct the Landslide Susceptibility Model(LSM)was combined with SHAP for model interpretation and the results were evaluated using Random Cross-validation(RCV)to ensure accuracy and reliability.To ensure optimal model performance,the XGB algorithm’s hyperparameters were tuned using Differential Evolution,considering multicollinearity-free variables.The results show that SU and HRU are effective for LSM,but their effectiveness varies depending on landscape characteristics.The XGB algorithm demonstrates strong predictive power and SHAP enhances model transparency of the influential variables involved.This work underscores the importance of selecting appropriate assessment units tailored to specific landscape characteristics for accurate LSM.The integration of advanced machine learning techniques with interpretative tools offers a robust framework for landslide susceptibility assessment,improving both predictive capabilities and model interpretability.Future research should integrate broader data sets and explore hybrid analytical models to strengthen the generalizability of these findings across varied geographical settings.
基金funded by Zhiyuan Laboratory(Grant NO.ZYL2024017a).
文摘The study of exoskeletons has been a popular topic worldwide.However,there is still a long way to go before exoskeletons can be widely used.One of the major challenges is control,and there is no specific research trend for controlling exoskeletons.In this paper,we propose a novel exoskeleton control strategy that combines Active Disturbance Rejection Control(ADRC)and Deep Reinforcement Learning(DRL).The dynamic model of the exoskeleton is constructed,followed with the design of the ADRC.To automatically adjust the control parameters of the ADRC,the Twin-Delayed Deep Deterministic Policy Gradient(TD3)is utilized.Then a reward function is defined in terms of the joint angle,angular velocity,and their errors to the desired values,to maximize the accuracy of the joint angle.In the simulations and experiments,a conventional ADRC,and ADRC based on Genetic Algorithm(GA)and Particle Swarm Optimization(PSO)were carried out for comparison with the proposed control method.The results of the tests show that TD3-ADRC has a rapid response,small overshoot,and low Mean Absolute Error(MAE)and Root Mean Square Error(RMSE)followed with the desired,demonstrating the superiority of the proposed control method for the self-learning control of exoskeleton.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R263),Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThe authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4210118DSR31)。
文摘The text classification process has been extensively investigated in various languages,especially English.Text classification models are vital in several Natural Language Processing(NLP)applications.The Arabic language has a lot of significance.For instance,it is the fourth mostly-used language on the internet and the sixth official language of theUnitedNations.However,there are few studies on the text classification process in Arabic.A few text classification studies have been published earlier in the Arabic language.In general,researchers face two challenges in the Arabic text classification process:low accuracy and high dimensionality of the features.In this study,an Automated Arabic Text Classification using Hyperparameter Tuned Hybrid Deep Learning(AATC-HTHDL)model is proposed.The major goal of the proposed AATC-HTHDL method is to identify different class labels for the Arabic text.The first step in the proposed model is to pre-process the input data to transform it into a useful format.The Term Frequency-Inverse Document Frequency(TF-IDF)model is applied to extract the feature vectors.Next,the Convolutional Neural Network with Recurrent Neural Network(CRNN)model is utilized to classify the Arabic text.In the final stage,the Crow Search Algorithm(CSA)is applied to fine-tune the CRNN model’s hyperparameters,showing the work’s novelty.The proposed AATCHTHDL model was experimentally validated under different parameters and the outcomes established the supremacy of the proposed AATC-HTHDL model over other approaches.
基金supported by the National Natural Science Foundation of China(No.61903291)Key Research and Development Program of Shaanxi Province(No.2022NY-094)。
文摘The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of the parameter selection of VAV MPC controller which is difficult to make the system have a desired response,a novel tuning method based on machine learning and improved particle swarm optimization(PSO)is proposed.In this method,the relationship between MPC controller parameters and time domain performance indices is established via machine learning.Then the PSO is used to optimize MPC controller parameters to get better performance in terms of time domain indices.In addition,the PSO algorithm is further modified under the principle of population attenuation and event triggering to tune parameters of MPC and reduce the computation time of tuning method.Finally,the effectiveness of the proposed method is validated via a hardware-in-the-loop VAV system.
文摘Updating the velocity in particle swarm optimization (PSO) consists of three terms: the inertia term, the cognitive term and the social term. The balance of these terms determines the balance of the global and local search abilities, and therefore the performance of PSO. In this work, an adaptive parallel PSO algorithm, which is based on the dynamic exchange of control parameters between adjacent swarms, has been developed. The proposed PSO algorithm enables us to adaptively optimize inertia factors, learning factors and swarm activity. By performing simulations of a search for the global minimum of a benchmark multimodal function, we have found that the proposed PSO successfully provides appropriate control parameter values, and thus good global optimization performance.
基金supported by the Selcuk University Scientific Projects Coordinatorship
文摘Artificial bee colony (ABC) algorithm is one of the popular swarm intelligence algorithms. ABC has been developed by being inspired foraging and waggle dance behaviors of real bee colonies in 2005. Since its invention in 2005, many ABC models have been proposed in order to solve different optimization problems. In all the models proposed, there are only one scout bee and a constant limit value used as control parameters for the bee population. In this study, the performance of ABC algorithm on the numeric optimization problems was analyzed by using different number of scout bees and limit values. Experimental results show that the results obtained by using more than one scout bee and different limit values, are better than the results of basic ABC. Therefore, the control parameters of the basic ABC should be tuned according to given class of optimization problems. In this paper, we propose reasonable value ranges of control parameters for the basic ABC in order to obtain better results on the numeric optimization problems.
基金Project(2007011049) supported by the Natural Science Foundation of Shanxi Province,China
文摘To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (IMC-PID) controller was proposed for the first order plus time-delay (FOPTD) process and the second order plus time-delay (SOPTD) process. By approximating the time-delay term of the process model with the first-order Taylor series, the expressions for IMC-PID controller parameters were derived, and they had only one adjustable parameter 2 which was directly related to the dynamic performance and robustness of the system. Moreover, an analytical approach of selecting 2 was given based on the maximum sensitivity Ms. Then, the robust tuning of the system could be achieved according to the value of Ms. In addition, the proposed method could be extended to the integrator plus time-delay (IPTD) process and the first order delay integrating (FODI) process. Simulation studies were carried out on various processes with time-delay, and the results show that the proposed method could provide a better dynamic performance of both the set-point tracking and disturbance rejection and robustness against parameters perturbation.
文摘Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters on generalization error, a new approach with two steps is proposed for selecting SVR parameters, First the kernel function and SVM parameters are optimized roughly through genetic algorithm, then the kernel parameter is finely adjusted by local linear search, This approach has been successfully applied to the prediction model of the sulfur content in hot metal. The experiment results show that the proposed approach can yield better generalization performance of SVR than other methods,
基金Project supported by the Natural Science Foundation of China (Key Grant No 10332030) and the National 973 Project of China (Grant No 5132103ZZT21B).
文摘In this paper conventional stochastic resonance (CSR) is realized by adding the noise intensity. This demonstrates that tuning the system parameters with fixed noise can make the noise play a constructive role and realize parameter- induced stochastic resonance (PSR). PSR can be interpreted as changing the intrinsic characteristic of the dynamical system to yield the cooperative effect between the stochastic-subjected nonlinear system and the external periodic force. This can be realized at any noise intensity, which greatly differs from CSR that is realized under the condition of the initial noise intensity not greater than the resonance level. Moreover, it is proved that PSR is different from the optimization of system parameters.