Titanium dioxide sheet photocatalysts composed of interwoven microstrips were successfully synthesized using filter paper as templates. The synthesized samples were characterized by means of Fourier transform infrared...Titanium dioxide sheet photocatalysts composed of interwoven microstrips were successfully synthesized using filter paper as templates. The synthesized samples were characterized by means of Fourier transform infrared spectroscopy, surface area analyzer, thermogravimetric analysis, powder X-ray diffraction, and scanning electron microscopy. The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in an aqueous solution under UV-illumination. The results demonstrated that the paper-like TiO2 sheets with the optimum proportion of anatase/rutile (10/1) had the highest photoactivity. And the presence of the filter paper fiber can improve the crystallinity, raise the anatase-rutile transformation temperature and contribute to the formation of being paper-like. A detailed formation mechanism for TiO2 sheets is proposed.展开更多
Ultrafast-charging energy storage devices are attractive for powering personal electronics and electric vehicles.Most ultrafast-charging devices are made of carbonaceous materials such as chemically converted graphene...Ultrafast-charging energy storage devices are attractive for powering personal electronics and electric vehicles.Most ultrafast-charging devices are made of carbonaceous materials such as chemically converted graphene and carbon nanotubes.Yet,their relatively low electrical conductivity may restrict their performance at ultrahigh charging rate.Here,we report the fabrication of a porous titanium nitride(TiN)paper as an alternative electrode material for ultrafast-charging devices.The TiN paper shows an excellent conductivity of 3.67×104 S m−1,which is considerably higher than most carbon-based electrodes.The paper-like structure also contains a combination of large pores between interconnected nanobelts and mesopores within the nanobelts.This unique electrode enables fast charging by simultaneously providing efficient ion diffusion and electron transport.The supercapacitors(SCs)made of TiN paper enable charging/discharging at an ultrahigh scan rate of 100 V s−1 in a wide voltage window of 1.5 V in Na2SO4 neutral electrolyte.It has an outstanding response time with a characteristic time constant of 4 ms.Significantly,the TiN paper-based SCs also show zero capacitance loss after 200,000 cycles,which is much better than the stability performance reported for other metal nitride SCs.Furthermore,the device shows great promise in scalability.The filtration method enables good control of the thickness and mass loading of TiN electrodes and devices.展开更多
用CVD法合成晶须状碳纳米管(WCNTs),对其进行石墨化纯化处理。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、拉曼光谱和热重分析(TGA)对其进行表征。以纤维素为基体材料,WCNTs为功能材料,将分散好的WCNTs与纸纤维混...用CVD法合成晶须状碳纳米管(WCNTs),对其进行石墨化纯化处理。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、拉曼光谱和热重分析(TGA)对其进行表征。以纤维素为基体材料,WCNTs为功能材料,将分散好的WCNTs与纸纤维混合,抽滤制成WCNTs复合纸,WCNTs复合纸的电导率由石墨化前14.1 S/m提升到石墨化后325.1 S/m。采用两电极体系,以1 mol/L Li PF6为电解液,通过循环伏安及恒流充放电方法来研究WCNTs复合纸为极片的超级电容器性能,在扫描速率为1 m V/s时,石墨化WCNTs复合纸电极的比容量达到90 F/g。在电流密度为800 m A/g时,比能量和比功率分别为21.3 Wh/kg和2.1 k W/kg,表现出良好的超级电容器性能。展开更多
The residues of organophosphorus pesticide(OPs)on fruits and vegetables pose a threat to human health,so it is very meaningful to explore simple and fast detect methods for OPs residual.In this work,nickel ferrite/nic...The residues of organophosphorus pesticide(OPs)on fruits and vegetables pose a threat to human health,so it is very meaningful to explore simple and fast detect methods for OPs residual.In this work,nickel ferrite/nickel oxide nanoparticles co-loaded three-dimensional reduced graphene oxide(3DRGONiFe2O4/NiO NPs),as a new low cost nanocomposite,was prepared.Based on its high performance mimetic peroxidase activity,a colorimetric method for the detection of OPs has been developed.Dichlorvos was chosen as model compounds to evaluate the detection performance.The detection linear range for dichlorvos is from 50μg/mL to 2.5×10^4μg/mL with a detection limit of 10μg/mL.Furthermore,a test paper can be developed based on the 3 DRGO-NiFe2O4/NiO NPs for visual detection of dichlorvos,and the image information of the paper sensor can be converted into digital signal and quantitative detection by a smartphone.Notably,this method can also be used to detect dichlorvos in real samples,including vegetables and fruits.Thus,the developed naked assay holds great potential in simple,inexpensive and rapid detection of OPs in fruit and vegetable samples.展开更多
Human adipose tissues are an ideal source of stem cells. It is important to find inducers that can safely and effectively differentiate stem cells into functional neurons for clinical use. In this study, we investigat...Human adipose tissues are an ideal source of stem cells. It is important to find inducers that can safely and effectively differentiate stem cells into functional neurons for clinical use. In this study, we investigate the use of Radix Angelicae Sinensis as an inducer of neuronal differentiation. Primary human adipose-derived stem cells were obtained from adult subcutaneous fatty tissue, then pre-induced with 10% Radix Angelicae Sinensis injection for 24 hours, and incubated in serum-free Dulbecco's modified Eagle's medium/Nutrient Mixture F-12 containing 40% Radix Angelicae Sinensis to induce its differentiation into neuron-like cells. Butylated hydroxyanisole, a common in- ducer for neuronal differentiation, was used as the control. After human adipose-derived stem cells differentiated into neuron-like cells under the induction of Radix Angelicae Sinensis for 24 hours, the positive expression of neuron-specific enolase was lower than that of the butylated hydroxyani- sole-induced group, and the expression of glial fibrillary acidic protein was negative. Alter they were induced for 48 hours, the positive expression of neuron specific enolase in human adipose-derived stem cells was significantly higher than that of the butylated hydroxyanisole-induced group. Our experimental findings indicate that Radix Angelicae Sinensis can induce human adipose-derived stem cell differentiation into neuron-like cells and produce less cytotoxicity.展开更多
基金This work was supported by the Natural Science Foundation of Shanxi Province (No.2009011099), the Program for the Top Science and Technology Innovation Team of Higher Learning Institutions of Shanxi, and the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi.
文摘Titanium dioxide sheet photocatalysts composed of interwoven microstrips were successfully synthesized using filter paper as templates. The synthesized samples were characterized by means of Fourier transform infrared spectroscopy, surface area analyzer, thermogravimetric analysis, powder X-ray diffraction, and scanning electron microscopy. The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in an aqueous solution under UV-illumination. The results demonstrated that the paper-like TiO2 sheets with the optimum proportion of anatase/rutile (10/1) had the highest photoactivity. And the presence of the filter paper fiber can improve the crystallinity, raise the anatase-rutile transformation temperature and contribute to the formation of being paper-like. A detailed formation mechanism for TiO2 sheets is proposed.
基金supported by Merced nAnomaterials Center for Energy and Sensing (MACES), a NASA funded MIRO center, under award NNX15AQ01supported by the US NSF MRI grant, MRI-1126845)
文摘Ultrafast-charging energy storage devices are attractive for powering personal electronics and electric vehicles.Most ultrafast-charging devices are made of carbonaceous materials such as chemically converted graphene and carbon nanotubes.Yet,their relatively low electrical conductivity may restrict their performance at ultrahigh charging rate.Here,we report the fabrication of a porous titanium nitride(TiN)paper as an alternative electrode material for ultrafast-charging devices.The TiN paper shows an excellent conductivity of 3.67×104 S m−1,which is considerably higher than most carbon-based electrodes.The paper-like structure also contains a combination of large pores between interconnected nanobelts and mesopores within the nanobelts.This unique electrode enables fast charging by simultaneously providing efficient ion diffusion and electron transport.The supercapacitors(SCs)made of TiN paper enable charging/discharging at an ultrahigh scan rate of 100 V s−1 in a wide voltage window of 1.5 V in Na2SO4 neutral electrolyte.It has an outstanding response time with a characteristic time constant of 4 ms.Significantly,the TiN paper-based SCs also show zero capacitance loss after 200,000 cycles,which is much better than the stability performance reported for other metal nitride SCs.Furthermore,the device shows great promise in scalability.The filtration method enables good control of the thickness and mass loading of TiN electrodes and devices.
文摘用CVD法合成晶须状碳纳米管(WCNTs),对其进行石墨化纯化处理。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、拉曼光谱和热重分析(TGA)对其进行表征。以纤维素为基体材料,WCNTs为功能材料,将分散好的WCNTs与纸纤维混合,抽滤制成WCNTs复合纸,WCNTs复合纸的电导率由石墨化前14.1 S/m提升到石墨化后325.1 S/m。采用两电极体系,以1 mol/L Li PF6为电解液,通过循环伏安及恒流充放电方法来研究WCNTs复合纸为极片的超级电容器性能,在扫描速率为1 m V/s时,石墨化WCNTs复合纸电极的比容量达到90 F/g。在电流密度为800 m A/g时,比能量和比功率分别为21.3 Wh/kg和2.1 k W/kg,表现出良好的超级电容器性能。
基金financially supported by the National Natural Science Foundation of China (Nos.21874061,21207057,21405159, 21505061)the Fundamental Research Funds for the Central Universities (Nos.lzujbky-2016-43,lzujbky-2018-80)
文摘The residues of organophosphorus pesticide(OPs)on fruits and vegetables pose a threat to human health,so it is very meaningful to explore simple and fast detect methods for OPs residual.In this work,nickel ferrite/nickel oxide nanoparticles co-loaded three-dimensional reduced graphene oxide(3DRGONiFe2O4/NiO NPs),as a new low cost nanocomposite,was prepared.Based on its high performance mimetic peroxidase activity,a colorimetric method for the detection of OPs has been developed.Dichlorvos was chosen as model compounds to evaluate the detection performance.The detection linear range for dichlorvos is from 50μg/mL to 2.5×10^4μg/mL with a detection limit of 10μg/mL.Furthermore,a test paper can be developed based on the 3 DRGO-NiFe2O4/NiO NPs for visual detection of dichlorvos,and the image information of the paper sensor can be converted into digital signal and quantitative detection by a smartphone.Notably,this method can also be used to detect dichlorvos in real samples,including vegetables and fruits.Thus,the developed naked assay holds great potential in simple,inexpensive and rapid detection of OPs in fruit and vegetable samples.
基金financially supported by the Science and Technology Project of Sichuan Province,No.2009JY0128the Health Ministry of Sichuan Province in China,No.20060052
文摘Human adipose tissues are an ideal source of stem cells. It is important to find inducers that can safely and effectively differentiate stem cells into functional neurons for clinical use. In this study, we investigate the use of Radix Angelicae Sinensis as an inducer of neuronal differentiation. Primary human adipose-derived stem cells were obtained from adult subcutaneous fatty tissue, then pre-induced with 10% Radix Angelicae Sinensis injection for 24 hours, and incubated in serum-free Dulbecco's modified Eagle's medium/Nutrient Mixture F-12 containing 40% Radix Angelicae Sinensis to induce its differentiation into neuron-like cells. Butylated hydroxyanisole, a common in- ducer for neuronal differentiation, was used as the control. After human adipose-derived stem cells differentiated into neuron-like cells under the induction of Radix Angelicae Sinensis for 24 hours, the positive expression of neuron-specific enolase was lower than that of the butylated hydroxyani- sole-induced group, and the expression of glial fibrillary acidic protein was negative. Alter they were induced for 48 hours, the positive expression of neuron specific enolase in human adipose-derived stem cells was significantly higher than that of the butylated hydroxyanisole-induced group. Our experimental findings indicate that Radix Angelicae Sinensis can induce human adipose-derived stem cell differentiation into neuron-like cells and produce less cytotoxicity.