Industrial activities have caused widespread arsenic(As)contamination in soil and medicinal crops across south-ern Asia.This study constructed interplanting systems combing medicinal crops with Pteris vittata L.,aimin...Industrial activities have caused widespread arsenic(As)contamination in soil and medicinal crops across south-ern Asia.This study constructed interplanting systems combing medicinal crops with Pteris vittata L.,aiming to mitigate the risk of As exposure in medicinal crops,while simultaneously achieving ecological remediation of contaminated soil.The results revealed that interplanting with P.vittata significantly enhanced the yield of Gynos-temma pentaphyllum by 31.90%(P<0.05)compared with monoculture systems.Under monoculture conditions,the As concentration in G.pentaphyllum leaves reached 2.34 mg/kg,exceeding the national food safety standard(GB2762–2017,2 mg/kg).However,interplanting with P.vittata effectively reduced the As concentration in G.pentaphyllum leaves to 1.82 mg/kg.Furthermore,the interplanting of P.vittata with Rhus chinensis significantly inhibited As translocation from belowground to aboveground tissues in R.chinensis.Compared to monoculture,the stem biomass of P.vittata was significantly increased by 57.50%and 70.32%when interplanted with G.pentaphyllum and Cassia obtusifolia L.(P<0.05).So the As enrichment of P.vittata was enhanced in interplanting systems,which is beneficial for the As removal from contaminated soil.The study demonstrated that interplant-ing primarily regulates plant As uptake through modifications of rhizosphere physicochemical properties and As bioavailability,especially for water-soluble As that is easily absorbed by plants.In conclusion,the interplant-ing models integrating medicinal crops and P.vittata can achieve the goal of“remediating while producing”in As-contaminated soil.展开更多
This study explores the thin-layer convective solar drying of Marrubium vulgare L.leaves under conditions typical of sun-rich semi-arid climates.Drying experiments were conducted at three inlet-air temperatures(40℃,5...This study explores the thin-layer convective solar drying of Marrubium vulgare L.leaves under conditions typical of sun-rich semi-arid climates.Drying experiments were conducted at three inlet-air temperatures(40℃,50℃,60℃)and two air velocities(1.5 and 2.5 m·s^(-1))using an indirect solar dryer with auxiliary temperature control.Moisture-ratio data were fitted with eight widely used thin-layer models and evaluated using correlation coefficient(r),root-mean-square error(RMSE),and Akaike information criterion(AIC).A complementary heattransfer analysis based on Reynolds and Prandtl numbers with appropriate Nusselt correlations was used to relate flow regime to drying performance,and an energy balance quantified the relative contributions of solar and auxiliary heat.The logarithmic model consistently achieved the lowest RMSE/AIC with r>0.99 across all conditions.Higher temperature and air velocity significantly reduced drying time during the decreasing-rate period,with no constantrate stage observed.On average,solar input supplied the large majority of the thermal demand,while the auxiliary heater compensated short irradiance drops to maintain setpoints.These findings provide a reproducible dataset and a modelling benchmark for M.vulgare leaves,and they support energy-aware design of hybrid solar dryers formedicinal plants in sun-rich regions.展开更多
基金supported by the National Key Research and Development Program of China(No.2020YFC1807805)the Science and Technology Planning Project of Guangzhou,Guangdong Province,China(No.202206010176).
文摘Industrial activities have caused widespread arsenic(As)contamination in soil and medicinal crops across south-ern Asia.This study constructed interplanting systems combing medicinal crops with Pteris vittata L.,aiming to mitigate the risk of As exposure in medicinal crops,while simultaneously achieving ecological remediation of contaminated soil.The results revealed that interplanting with P.vittata significantly enhanced the yield of Gynos-temma pentaphyllum by 31.90%(P<0.05)compared with monoculture systems.Under monoculture conditions,the As concentration in G.pentaphyllum leaves reached 2.34 mg/kg,exceeding the national food safety standard(GB2762–2017,2 mg/kg).However,interplanting with P.vittata effectively reduced the As concentration in G.pentaphyllum leaves to 1.82 mg/kg.Furthermore,the interplanting of P.vittata with Rhus chinensis significantly inhibited As translocation from belowground to aboveground tissues in R.chinensis.Compared to monoculture,the stem biomass of P.vittata was significantly increased by 57.50%and 70.32%when interplanted with G.pentaphyllum and Cassia obtusifolia L.(P<0.05).So the As enrichment of P.vittata was enhanced in interplanting systems,which is beneficial for the As removal from contaminated soil.The study demonstrated that interplant-ing primarily regulates plant As uptake through modifications of rhizosphere physicochemical properties and As bioavailability,especially for water-soluble As that is easily absorbed by plants.In conclusion,the interplant-ing models integrating medicinal crops and P.vittata can achieve the goal of“remediating while producing”in As-contaminated soil.
文摘This study explores the thin-layer convective solar drying of Marrubium vulgare L.leaves under conditions typical of sun-rich semi-arid climates.Drying experiments were conducted at three inlet-air temperatures(40℃,50℃,60℃)and two air velocities(1.5 and 2.5 m·s^(-1))using an indirect solar dryer with auxiliary temperature control.Moisture-ratio data were fitted with eight widely used thin-layer models and evaluated using correlation coefficient(r),root-mean-square error(RMSE),and Akaike information criterion(AIC).A complementary heattransfer analysis based on Reynolds and Prandtl numbers with appropriate Nusselt correlations was used to relate flow regime to drying performance,and an energy balance quantified the relative contributions of solar and auxiliary heat.The logarithmic model consistently achieved the lowest RMSE/AIC with r>0.99 across all conditions.Higher temperature and air velocity significantly reduced drying time during the decreasing-rate period,with no constantrate stage observed.On average,solar input supplied the large majority of the thermal demand,while the auxiliary heater compensated short irradiance drops to maintain setpoints.These findings provide a reproducible dataset and a modelling benchmark for M.vulgare leaves,and they support energy-aware design of hybrid solar dryers formedicinal plants in sun-rich regions.