Single input single output system was studied. With proportion, differential, integral results of deviation between given input and output as controller input, the logic rules in control process was analyzed, these lo...Single input single output system was studied. With proportion, differential, integral results of deviation between given input and output as controller input, the logic rules in control process was analyzed, these logic rule with Pan-Boolean algebra was described, therefore a PID Pan-Boolean algebra control algorithm was obtained. The simulation results indicates that the new control algorithm is more effective compared to the traditional PID algorithm, having advantages such as more than 3 adjustable parameters of controllers, better result, and so on.展开更多
A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decou...A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decoupled input-output representations of HLLV were derived, rendering three decoupled second-order systems, i.e., pitch, yaw and roll channels. Based on a new type of numerical differentiator, a differential algebraic observer (DAO) was proposed for estimating the system states and the generalized disturbances, including various disturbances and additive fault torques. Driven by DAOs, three improved proportional-integral- differential (PID) controllers with disturbance compensation were designed for pitch, yaw and roll control. All signals in the closed-loop system were guaranteed to be ultimately uniformly bounded by utilization of Lyapunov's indirect method. The convincing numerical simulations indicate that the proposed control scheme is successful in achieving high performance in the presence of parametric perturbations, external disturbances, noisy corruptions, and actuator faults.展开更多
A hierarchical closed-loop production control scheme integrating scheduling,control and performance evaluation is discussed.Firstly,the production process is divided into two main hierarchies:the lower level is the ph...A hierarchical closed-loop production control scheme integrating scheduling,control and performance evaluation is discussed.Firstly,the production process is divided into two main hierarchies:the lower level is the physical operation level and the upper one is the management level.Secondly,the schedule template for the management level and the activity template for the physical operation level are constructed separately,the tasks in the schedule have the ability to make partial decisions,and the per- formance parameters are introduced into activity template.Thirdly,the two levels use different model representations:stochastic process algebra for the management level whose output is the control commands and stochastic Petri net for the physical operation lev- el which is the execution of the control commands.Then,the integration of the two levels is the control commands mapping into the lower physical operations and the responses feeding back to the upper decision-making that are defined by some transition functions. Under the proposed scheme,the production process control of a flexible assembly is exemplified.It is concluded that the process con- trol model has partial ability to make decision on-line for uncertain and dynamic environments and facilitates reasoning about the be- haviors of the process control,and performance evaluation can be done online for real-time scheduling to ensure the global optimiza- tion.展开更多
In this paper, stochastic stabilization is investigated by max-plus algebra for a Markovian jump cloud control system with a reference signal. For the Markovian jump cloud control system, there exists framework adjust...In this paper, stochastic stabilization is investigated by max-plus algebra for a Markovian jump cloud control system with a reference signal. For the Markovian jump cloud control system, there exists framework adjustment whose evolution is satisfied with a Markov chain. Using max-plus algebra, a maxplus stochastic system is used to describe the Markovian jump cloud control system. A causal feedback matrix is obtained by exponential stability analysis for a causal feedback controller of the Markovian jump cloud control system. A sufficient condition is given to ensure existence on the causal feedback matrix of the causal feedback controller. Based on the causal feedback controller, stochastic stabilization in probability is analyzed for the Markovian jump cloud control system with a reference signal.Simulation results are given to show effectiveness of the causal feedback controller for the Markovian jump cloud control system.展开更多
In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the con...In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the controlled errors is analyzed. The stability analysis is done for a model problem, and the stability region is ploted which gives the range of the sampling stepsizes with which the stability of control process is guaranteed.展开更多
针对含不确定因素的多输入多输出非线性微分代数系统,提出一种目标全息反馈鲁棒自适应控制方法(robust adaptive control with objective holographic feedbacks,RACOHF).该方法考虑到了系统模型参数的不确定性和外部扰动,同时将外部输...针对含不确定因素的多输入多输出非线性微分代数系统,提出一种目标全息反馈鲁棒自适应控制方法(robust adaptive control with objective holographic feedbacks,RACOHF).该方法考虑到了系统模型参数的不确定性和外部扰动,同时将外部输入扰动视为模型不确定性参数的变化,在目标全息反馈控制方法的基础上,通过设计模型不确定性部分的自适应调节律,实现多目标的自适应跟踪控制.将该方法应用于中间再热式汽轮发电机组蒸汽调节阀和励磁的协调控制,结果表明,在系统部分参数不确定和存在外部扰动的情况下,所提出方法能确保发电机机端电压和有功功率等目标量在期望的工作点上运行而不发生静态偏移.与目标全息反馈非线性控制(nonlinear control with objective holographic feedbacks,NCOHF)相比,所提出的方法(RACOHF)能更好地协调系统的动、静态性能.展开更多
The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomi...The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomials depends on that of their edge polynomials. This paper transforms the interval quasipolynomials into two-dimensional (2-D) interval polynomials (2-D s-z hybrid polynomials), proves that the robust stability of interval 2-D polynomials are sufficient for the stability of given quasipolynomials. Thus, the stability test of interval quasipolynomials can be completed in 2-D s-z domain instead of classical 1-D s domain. The 2-D s-z hybrid polynomials should have different forms under the time delay properties of given quasipolynomials. The stability test proposed by the paper constructs an edge test set from Kharitonov vertex polynomials to reduce the number of testing edge polynomials. The 2-D algebraic tests are provided for the stability test of vertex 2-D polynomials and edge 2-D polynomials family. To verify the results of the paper to be correct and valid, the simulations based on proposed results and comparison with other presented results are given.展开更多
Structural controllability is critical for operating and controlling large-scale complex networks. In real applications, for a given network, it is always desirable to have more selections for driver nodes which make ...Structural controllability is critical for operating and controlling large-scale complex networks. In real applications, for a given network, it is always desirable to have more selections for driver nodes which make the network structurally controllable. Different from the works in complex network field where structural controllability is often used to explore the emergence properties of complex networks at a macro level,in this paper, we investigate it for control design purpose at the application level and focus on describing and obtaining the solution space for all selections of driver nodes to guarantee structural controllability. In accord with practical applications,we define the complete selection rule set as the solution space which is composed of a series of selection rules expressed by intuitive algebraic forms. It explicitly indicates which nodes must be controlled and how many nodes need to be controlled in a node set and thus is particularly helpful for freely selecting driver nodes. Based on two algebraic criteria of structural controllability, we separately develop an input-connectivity algorithm and a relevancy algorithm to deduce selection rules for driver nodes. In order to reduce the computational complexity,we propose a pretreatment algorithm to reduce the scale of network's structural matrix efficiently, and a rearrangement algorithm to partition the matrix into several smaller ones. A general procedure is proposed to get the complete selection rule set for driver nodes which guarantee network's structural controllability. Simulation tests with efficiency analysis of the proposed algorithms are given and the result of applying the proposed procedure to some real networks is also shown, and these all indicate the validity of the proposed procedure.展开更多
This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be sol...This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.展开更多
This paper addresses a coordinated control problem for Spacecraft Formation Flying(SFF). The distributed followers are required to track and synchronize with the leader spacecraft.By using the feature points in the tw...This paper addresses a coordinated control problem for Spacecraft Formation Flying(SFF). The distributed followers are required to track and synchronize with the leader spacecraft.By using the feature points in the two-dimensional image space, an integrated 6-degree-of-freedom dynamic model is formulated for spacecraft relative motion. Without sophisticated threedimensional reconstruction, image features are directly utilized for the controller design. The proposed image-based controller can drive the follower spacecraft in the desired configuration with respect to the leader when the real-time captured images match their reference counterparts. To improve the precision of the formation configuration, the proposed controller employs a coordinated term to reduce the relative distance errors between followers. The uncertainties in the system dynamics are handled by integrating the adaptive technique into the controller, which increases the robustness of the SFF system. The closed-loop system stability is analyzed using the Lyapunov method and algebraic graph theory. A numerical simulation for a given SFF scenario is performed to evaluate the performance of the controller.展开更多
This paper discusses discrete-time stochastic linear quadratic (LQ) problem in the infinite horizon with state and control dependent noise, where the weighting matrices in the cost function are assumed to be indefin...This paper discusses discrete-time stochastic linear quadratic (LQ) problem in the infinite horizon with state and control dependent noise, where the weighting matrices in the cost function are assumed to be indefinite. The problem gives rise to a generalized algebraic Riccati equation (GARE) that involves equality and inequality constraints. The well-posedness of the indefinite LQ problem is shown to be equivalent to the feasibility of a linear matrix inequality (LMI). Moreover, the existence of a stabilizing solution to the GARE is equivalent to the attainability of the LQ problem. All the optimal controls are obtained in terms of the solution to the GARE. Finally, we give an LMI -based approach to solve the GARE via a semidefinite programming.展开更多
For an underactuated spacecraft using only one thruster, the attitude controllability with respect to the or- bit frame is studied in the presence of periodical oscillation disturbance, which provides a preconditional...For an underactuated spacecraft using only one thruster, the attitude controllability with respect to the or- bit frame is studied in the presence of periodical oscillation disturbance, which provides a preconditional guide on de- signing control law for underactuated attitude control sys- tem. Firstly, attitude dynamic model was established for an underactuated spacecraft, and attitude motion was described using the special orthogonal group (SO (3)). Secondly, Liou- ville theorem was used to confirm that the flow generated by the drift vector of the underactuated attitude control system is volume-preserving. Furthermore, according to Poincar6's re- currence theorem, we draw conclusions that this drift field is weakly positively poisson stable (WPPS). Thirdly, the suffi- cient and necessary condition of controllability was obtained on the basis of lie algebra rank condition (LARC). Finally, the controllable conditions were analyzed and simulated in different cases of inertia matrix with the installed position of thruster.展开更多
This paper investigates the secure synchronization control problem for a class of cyber-physical systems(CPSs)with unknown system matrices and intermittent denial-of-service(DoS)attacks.For the attack free case,an opt...This paper investigates the secure synchronization control problem for a class of cyber-physical systems(CPSs)with unknown system matrices and intermittent denial-of-service(DoS)attacks.For the attack free case,an optimal control law consisting of a feedback control and a compensated feedforward control is proposed to achieve the synchronization,and the feedback control gain matrix is learned by iteratively solving an algebraic Riccati equation(ARE).For considering the attack cases,it is difficult to perform the stability analysis of the synchronization errors by using the existing Lyapunov function method due to the presence of unknown system matrices.In order to overcome this difficulty,a matrix polynomial replacement method is given and it is shown that,the proposed optimal control law can still guarantee the asymptotical convergence of synchronization errors if two inequality conditions related with the DoS attacks hold.Finally,two examples are given to illustrate the effectiveness of the proposed approaches.展开更多
基金Project (J51801) supported by Shanghai Education Commission Key DisciplineProject(08ZY79)supported by Shanghai Education Commission Research FundProject(DZ207004)supported by Shanghai Second Polytechnic University Fund
文摘Single input single output system was studied. With proportion, differential, integral results of deviation between given input and output as controller input, the logic rules in control process was analyzed, these logic rule with Pan-Boolean algebra was described, therefore a PID Pan-Boolean algebra control algorithm was obtained. The simulation results indicates that the new control algorithm is more effective compared to the traditional PID algorithm, having advantages such as more than 3 adjustable parameters of controllers, better result, and so on.
基金Foundation item: Project(2012M521538) supported by China Postdoctoral Science Foundation Project suppolted by Postdoctoral Science Foundation of Central South University
文摘A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decoupled input-output representations of HLLV were derived, rendering three decoupled second-order systems, i.e., pitch, yaw and roll channels. Based on a new type of numerical differentiator, a differential algebraic observer (DAO) was proposed for estimating the system states and the generalized disturbances, including various disturbances and additive fault torques. Driven by DAOs, three improved proportional-integral- differential (PID) controllers with disturbance compensation were designed for pitch, yaw and roll control. All signals in the closed-loop system were guaranteed to be ultimately uniformly bounded by utilization of Lyapunov's indirect method. The convincing numerical simulations indicate that the proposed control scheme is successful in achieving high performance in the presence of parametric perturbations, external disturbances, noisy corruptions, and actuator faults.
文摘A hierarchical closed-loop production control scheme integrating scheduling,control and performance evaluation is discussed.Firstly,the production process is divided into two main hierarchies:the lower level is the physical operation level and the upper one is the management level.Secondly,the schedule template for the management level and the activity template for the physical operation level are constructed separately,the tasks in the schedule have the ability to make partial decisions,and the per- formance parameters are introduced into activity template.Thirdly,the two levels use different model representations:stochastic process algebra for the management level whose output is the control commands and stochastic Petri net for the physical operation lev- el which is the execution of the control commands.Then,the integration of the two levels is the control commands mapping into the lower physical operations and the responses feeding back to the upper decision-making that are defined by some transition functions. Under the proposed scheme,the production process control of a flexible assembly is exemplified.It is concluded that the process con- trol model has partial ability to make decision on-line for uncertain and dynamic environments and facilitates reasoning about the be- haviors of the process control,and performance evaluation can be done online for real-time scheduling to ensure the global optimiza- tion.
基金supported by the National Natural Science Foundation of China (61973230)Tianjin Research Innovation Project for Postgraduate Students (2021YJSO2S03)。
文摘In this paper, stochastic stabilization is investigated by max-plus algebra for a Markovian jump cloud control system with a reference signal. For the Markovian jump cloud control system, there exists framework adjustment whose evolution is satisfied with a Markov chain. Using max-plus algebra, a maxplus stochastic system is used to describe the Markovian jump cloud control system. A causal feedback matrix is obtained by exponential stability analysis for a causal feedback controller of the Markovian jump cloud control system. A sufficient condition is given to ensure existence on the causal feedback matrix of the causal feedback controller. Based on the causal feedback controller, stochastic stabilization in probability is analyzed for the Markovian jump cloud control system with a reference signal.Simulation results are given to show effectiveness of the causal feedback controller for the Markovian jump cloud control system.
文摘In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the controlled errors is analyzed. The stability analysis is done for a model problem, and the stability region is ploted which gives the range of the sampling stepsizes with which the stability of control process is guaranteed.
文摘针对含不确定因素的多输入多输出非线性微分代数系统,提出一种目标全息反馈鲁棒自适应控制方法(robust adaptive control with objective holographic feedbacks,RACOHF).该方法考虑到了系统模型参数的不确定性和外部扰动,同时将外部输入扰动视为模型不确定性参数的变化,在目标全息反馈控制方法的基础上,通过设计模型不确定性部分的自适应调节律,实现多目标的自适应跟踪控制.将该方法应用于中间再热式汽轮发电机组蒸汽调节阀和励磁的协调控制,结果表明,在系统部分参数不确定和存在外部扰动的情况下,所提出方法能确保发电机机端电压和有功功率等目标量在期望的工作点上运行而不发生静态偏移.与目标全息反馈非线性控制(nonlinear control with objective holographic feedbacks,NCOHF)相比,所提出的方法(RACOHF)能更好地协调系统的动、静态性能.
基金This project was supported by the National Science Foundation of China (60572093).
文摘The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomials depends on that of their edge polynomials. This paper transforms the interval quasipolynomials into two-dimensional (2-D) interval polynomials (2-D s-z hybrid polynomials), proves that the robust stability of interval 2-D polynomials are sufficient for the stability of given quasipolynomials. Thus, the stability test of interval quasipolynomials can be completed in 2-D s-z domain instead of classical 1-D s domain. The 2-D s-z hybrid polynomials should have different forms under the time delay properties of given quasipolynomials. The stability test proposed by the paper constructs an edge test set from Kharitonov vertex polynomials to reduce the number of testing edge polynomials. The 2-D algebraic tests are provided for the stability test of vertex 2-D polynomials and edge 2-D polynomials family. To verify the results of the paper to be correct and valid, the simulations based on proposed results and comparison with other presented results are given.
基金supported by National Natural Science Foundation of China(61403149,61573298)Natural Science Foundation of Fujian Province(2015J01261,2016J05165)Foundation of Huaqiao University(Z14Y0002)
基金supported by the National Science Foundation of China(61333009,61473317,61433002,61521063,61590924,61673366)the National High Technology Research and Development Program of China(2015AA043102)
文摘Structural controllability is critical for operating and controlling large-scale complex networks. In real applications, for a given network, it is always desirable to have more selections for driver nodes which make the network structurally controllable. Different from the works in complex network field where structural controllability is often used to explore the emergence properties of complex networks at a macro level,in this paper, we investigate it for control design purpose at the application level and focus on describing and obtaining the solution space for all selections of driver nodes to guarantee structural controllability. In accord with practical applications,we define the complete selection rule set as the solution space which is composed of a series of selection rules expressed by intuitive algebraic forms. It explicitly indicates which nodes must be controlled and how many nodes need to be controlled in a node set and thus is particularly helpful for freely selecting driver nodes. Based on two algebraic criteria of structural controllability, we separately develop an input-connectivity algorithm and a relevancy algorithm to deduce selection rules for driver nodes. In order to reduce the computational complexity,we propose a pretreatment algorithm to reduce the scale of network's structural matrix efficiently, and a rearrangement algorithm to partition the matrix into several smaller ones. A general procedure is proposed to get the complete selection rule set for driver nodes which guarantee network's structural controllability. Simulation tests with efficiency analysis of the proposed algorithms are given and the result of applying the proposed procedure to some real networks is also shown, and these all indicate the validity of the proposed procedure.
文摘This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.
基金supported by National Natural Science Foundation of China(61233004,61221003,61374109,61104091,61304078,61473184)National Basic Research Program of China(973 Program)(2013CB035500)+2 种基金the International Cooperation Program of Shanghai Science and Technology Commission(12230709600)the Higher Education Research Fund for the Doctoral Program of China(20120073130006,20110073110018)the China Postdoctoral Science Foundation(2013M540364)
基金supported by National Natural Science Foundation of China(61573194,61374180,61573096)China Postdoctoral Science Foundation Funded Project(2013M530229)+3 种基金China Postdoctoral Science Special Foundation Funded Project(2014T70463)Six Talent Peaks High Level Project of Jiangsu Province(ZNDW-004)Science Foundation of Nanjing University of Posts and Telecommunications(NY213095)Australian Research Council(DP120104986)
文摘This paper addresses a coordinated control problem for Spacecraft Formation Flying(SFF). The distributed followers are required to track and synchronize with the leader spacecraft.By using the feature points in the two-dimensional image space, an integrated 6-degree-of-freedom dynamic model is formulated for spacecraft relative motion. Without sophisticated threedimensional reconstruction, image features are directly utilized for the controller design. The proposed image-based controller can drive the follower spacecraft in the desired configuration with respect to the leader when the real-time captured images match their reference counterparts. To improve the precision of the formation configuration, the proposed controller employs a coordinated term to reduce the relative distance errors between followers. The uncertainties in the system dynamics are handled by integrating the adaptive technique into the controller, which increases the robustness of the SFF system. The closed-loop system stability is analyzed using the Lyapunov method and algebraic graph theory. A numerical simulation for a given SFF scenario is performed to evaluate the performance of the controller.
基金supported by the National Natural Science Foundation of China(Nos.61174078,61170054,61402265)the Research Fund for the Taishan Scholar Project of Shandong Province of China
文摘This paper discusses discrete-time stochastic linear quadratic (LQ) problem in the infinite horizon with state and control dependent noise, where the weighting matrices in the cost function are assumed to be indefinite. The problem gives rise to a generalized algebraic Riccati equation (GARE) that involves equality and inequality constraints. The well-posedness of the indefinite LQ problem is shown to be equivalent to the feasibility of a linear matrix inequality (LMI). Moreover, the existence of a stabilizing solution to the GARE is equivalent to the attainability of the LQ problem. All the optimal controls are obtained in terms of the solution to the GARE. Finally, we give an LMI -based approach to solve the GARE via a semidefinite programming.
基金partially supported by National Natural Science Foundation of China(61290322,61273222,61322303,61473248,61403335)Hebei Province Applied Basis Research Project(15967629D)Top Talents Project of Hebei Province and Yanshan University Project(13LGA020)
基金supported by National Natural Science Foundation of China (10902003)
文摘For an underactuated spacecraft using only one thruster, the attitude controllability with respect to the or- bit frame is studied in the presence of periodical oscillation disturbance, which provides a preconditional guide on de- signing control law for underactuated attitude control sys- tem. Firstly, attitude dynamic model was established for an underactuated spacecraft, and attitude motion was described using the special orthogonal group (SO (3)). Secondly, Liou- ville theorem was used to confirm that the flow generated by the drift vector of the underactuated attitude control system is volume-preserving. Furthermore, according to Poincar6's re- currence theorem, we draw conclusions that this drift field is weakly positively poisson stable (WPPS). Thirdly, the suffi- cient and necessary condition of controllability was obtained on the basis of lie algebra rank condition (LARC). Finally, the controllable conditions were analyzed and simulated in different cases of inertia matrix with the installed position of thruster.
基金supported in part by the National Natural Science Foundation of China(61873050)the Fundamental Research Funds for the Central Universities(N180405022,N2004010)+1 种基金the Research Fund of State Key Laboratory of Synthetical Automation for Process Industries(2018ZCX14)Liaoning Revitalization Talents Program(XLYC1907088)。
文摘This paper investigates the secure synchronization control problem for a class of cyber-physical systems(CPSs)with unknown system matrices and intermittent denial-of-service(DoS)attacks.For the attack free case,an optimal control law consisting of a feedback control and a compensated feedforward control is proposed to achieve the synchronization,and the feedback control gain matrix is learned by iteratively solving an algebraic Riccati equation(ARE).For considering the attack cases,it is difficult to perform the stability analysis of the synchronization errors by using the existing Lyapunov function method due to the presence of unknown system matrices.In order to overcome this difficulty,a matrix polynomial replacement method is given and it is shown that,the proposed optimal control law can still guarantee the asymptotical convergence of synchronization errors if two inequality conditions related with the DoS attacks hold.Finally,two examples are given to illustrate the effectiveness of the proposed approaches.