As the world’s largest palm oil producer,Indonesia significantly benefits from its palm oil industry but also faces serious environmental challenges from palm oil mill effluent(POME)-a high-strength wastewater contai...As the world’s largest palm oil producer,Indonesia significantly benefits from its palm oil industry but also faces serious environmental challenges from palm oil mill effluent(POME)-a high-strength wastewater containing substantial organic matter,nutrients,suspended solids,and various chemical compounds.Sustainable and effective wastewater treatment strategies are urgently needed to address this issue.This review presents a comprehensive analysis of existing POME treatment technologies,including anaerobic digestion(AD),advanced oxidation processes(AOPs),membrane filtration,adsorption,phytoremediation,and microalgae-based systems.Each method is examined in terms of treatment efficiency,operational feasibility,and potential for imple-mentation under Indonesian conditions.While advanced processes,such as AOPs and membrane filtration,achieve high pollutant removal,they are often limited by operational costs.In contrast,biological approaches,such as AD and phytoremediation,offer both environmental benefits and economic value through the recovery of biogas,biofertilizers,and biomass.This review highlights the potential for integrating wastewater purification with resource recovery and valorization,supporting a shift toward more circular and sustainable management of POME.The insights provided are intended to guide future research,inform policy decisions,and facilitate the industrial adoption of optimized treatment systems.展开更多
Malaysia,as one of the highest producers of palm oil globally and one of the largest exporters,has a huge potential to use palmoil waste to generate electricity since an abundance of waste is produced during the palmo...Malaysia,as one of the highest producers of palm oil globally and one of the largest exporters,has a huge potential to use palmoil waste to generate electricity since an abundance of waste is produced during the palmoil extraction process.In this paper,we have first examined and compared the use of palmoil waste as biomass for electricity generation in different countries with reference to Malaysia.Some areas with default accessibility in rural areas,like those in Sabah and Sarawak,require a cheap and reliable source of electricity.Palm oil waste possesses the potential to be the source.Therefore,this research examines the cost-effective comparison between electricity generated frompalm oil waste and standalone diesel electric generation in Marudi,Sarawak,Malaysia.This research aims to investigate the potential electricity generation using palm oil waste and the feasibility of implementing the technology in rural areas.To implement and analyze the feasibility,a case study has been carried out in a rural area in Sarawak,Malaysia.The finding shows the electricity cost calculation of small towns like Long Lama,Long Miri,and Long Atip,with ten nearby schools,and suggests that using EFB from palm oil waste is cheaper and reduces greenhouse gas emissions.The study also points out the need to conduct further research on power systems,such as energy storage andmicrogrids,to better understand the future of power systems.By collecting data through questionnaires and surveys,an analysis has been carried out to determine the approximate cost and quantity of palm oil waste to generate cheaper renewable energy.We concluded that electricity generation from palm oil waste is cost-effective and beneficial.The infrastructure can be a microgrid connected to the main grid.展开更多
The total replacement of old fossil fuels poses obstacles,making the production of efficient biogasoline vital.Despite its potential as an environmentally friendly fossil fuel substitute,the life cycle assessment(LCA)...The total replacement of old fossil fuels poses obstacles,making the production of efficient biogasoline vital.Despite its potential as an environmentally friendly fossil fuel substitute,the life cycle assessment(LCA)of palm oil-derived biogasoline remains underexplored.This study investigated the production of biogasoline fromcrude palm oil(CPO)based biorefinery using catalytic cracking over mesoporousγ-Al_(2)O_(3) catalyst and LCA analysis.High selectivity of converting CPO into biogasoline was achieved by optimizing catalytic cracking parameters,including catalyst dose,temperature,and contact time.γ-Al_(2)O_(3) and CPO were characterized by several methods to study the physical and chemical properties.The physical properties of biogasoline,such as density,calorific value,viscosity,and flash point,were investigated.An overall yield of 60.11%was achieved after catalytic cracking produced several C5-C11 short-chain hydrocarbons.Additionally,this research proposes innovative emission reduction strategies,including waste-to-biogasoline conversion and the use of biodegradable feedstocks that enhance the sustainability of biogasoline production.LCA ofγ-Al_(2)O_(3)’s energy and environmental implications reveals minor effects on global warming(0.0068%)and freshwater ecotoxicity(0.187%).LCAs show a 0.085%impact in the energy sector.This focus on both ecological impacts and practical mitigation strategies deepens the understanding of biogasoline production.展开更多
To achieve palm oil conversion along with a high yield of long‐chain alkane,a series of NiFe layered double oxide catalysts were prepared and employed in the deoxygenation of palm oil.The layered structure of these c...To achieve palm oil conversion along with a high yield of long‐chain alkane,a series of NiFe layered double oxide catalysts were prepared and employed in the deoxygenation of palm oil.The layered structure of these catalysts was confirmed by XRD and SEM analyses,and Ni and Fe species existed primarily in the forms of Ni^(2+)and Fe^(3+),respectively.It was found that Ni/Fe molar ratio influenced the H_(2)reducibility and surface properties of NiFe catalysts.Specifically,Ni_(2)Fe‐LDO and Ni_(3)Fe‐LDO exhibited higher reducibility under H_(2)atmosphere.Moreover,the Ni_(2)Fe‐LDO catalyst contained a higher concentration of surface oxygen species(Osurf).Deoxygenation results demonstrated that the Ni_(2)Fe‐LDO catalyst achieved superior palm oil conversion,higher liquid product yield and enhanced selectivity toward C_(15)–C_(18)hydrocarbons compared to other catalysts.This improved performance was attributed to its higher hydrogen dissociation activity and enhanced adsorption capacity for palm oil molecules.Furthermore,reaction condition studies revealed that palm oil was completely converted,yielding 86.8%liquid product with 81.8%selectivity of C_(15)–C_(18)hydrocarbons at 350℃under 7 MPa H_(2)pressure.This finding provides an insight into the development of efficient catalysts for the deoxygenation of fatty compounds to biofuels.展开更多
Mixed crude palm oil (MCPO), the mixture of palm fiber oil and palm kernel oil, has become of great interest as a renewable energy source. It can be easily extracted from whole dried palm fruits. In the present work...Mixed crude palm oil (MCPO), the mixture of palm fiber oil and palm kernel oil, has become of great interest as a renewable energy source. It can be easily extracted from whole dried palm fruits. In the present work, the degummed, deacidified MCPO was blended in petroleum diesel at portions of 30% and 40% by volume and then tested in agricultural diesel engines for long term usage. The particulates from the exhaust of the engines were collected every 500 hr using a four-stage cascade air sampler. The 50% cut-off aerodynamic diameters for the first three stages were 10, 2.5 and 1μm, while the last stage collected all particles smaller than 1 μm. Sixteen particle bounded polycyclic aromatic hydrocarbons (PAHs) were analyzed using a high performance liquid chromatography. The results indicated that the size distribution of particulate matter was in the accmnulation mode and the pattern of total PAHs associated with fine-particles (〈 1 μm) showed a dominance of larger molecular weight PAHs (4--6 aromatic rings), especially pyrene. The mass median diameter, PM and total PAH concentrations decreased when increasing the palm oil content, but increased when the running hours of the engine were increased. In addition, Commercial petroleum diesel (PB0) gave the highest value of carcinogenic potency equivalent (BaPeq) for all particle size ranges. As the palm oil was increased, the; BaPeq decreased gradually. Therefore the degununed-deacidified MCPO blends are recommended for diesel substitute.展开更多
The climate change and limitation of natural resources becomes main obstacle for the global economical development. So, the Vietnamese Government is very much concerned with reduction of harmful gas discharging from t...The climate change and limitation of natural resources becomes main obstacle for the global economical development. So, the Vietnamese Government is very much concerned with reduction of harmful gas discharging from the inland-water way ships. To overcome the problems, there are many counter-measures proposed such as: renovation of machinery and equipment, using re-creative energy and so on. The author's idea is to find a suitable method which can be applied on board of the inland-water ships to reduce discharging toxic gas by using blended palm oil as alternative fuel for marine diesel engines. Due to some disadvantages of the bended palm oil in comparison with traditional DO (diesel oil), such as: low freezing point, high viscosity, low stability of blended fue, therefore somehow, the blended palm oil must be made a ship directly on board. With this idea, the author has designed and made agitate mixing equipment working on-line with fuel supply system of a diesel engine. The mixing equipment, then, has been tested at shore-side laboratory as well as on board ships. The research results showed that the fuel mixture (palm oil-DO) made by this mixing equipment is fully usable to replace traditional DO for marine diesel engines installed on board ships of inland water way in Vietnam. The Vietnamese Government accepted the research results as prerequisite to devise specific and practical action plans to reduce the pollution from the inland water way ships in coming years.展开更多
A bench-scale expanded granular sludge bed (EGSB) reactor was applied to the treatment of palm oil mill effluent (POME). The reactor had been operated continuously at 35℃ for 514 d, with organic loading rate (OL...A bench-scale expanded granular sludge bed (EGSB) reactor was applied to the treatment of palm oil mill effluent (POME). The reactor had been operated continuously at 35℃ for 514 d, with organic loading rate (OLR) increased from 1.45 to 17.5 kg COD/(m^3·d). The results showed that the EGSB reactor had good performance in terms of COD removal on the one hand, high COD removal of 91% was obtained at two days' of hydraulic retention time (HRT), and the highest OLR of 17.5 kg COD/(m^3·d). On the other hand, only 46% COD in raw POME was transformed into biogas in which the methane content was about 70% (V/V). A 30-d intermittent experiment indicated that the maximum transformation potential of organic matter in raw POME into methane was 56%. Volatile fatty acid (VFA) accumulation was observed in the later operation stage, and this was settled by supplementing trace metal elements. On the whole, the system exhibited good stability in terms of acidity and alkalinity. Finally, the operational problems inherent in the laboratory scale experiment and the corresponding countermeasures were also discussed.展开更多
Palm oil is currently the leading edible oil consumed worldwide. Triacylglycerol (TAG) and diacylglycerol (DAG) are the dominant lipid classes in palm oil. Other lipid classes present in crude palm oil, such as ph...Palm oil is currently the leading edible oil consumed worldwide. Triacylglycerol (TAG) and diacylglycerol (DAG) are the dominant lipid classes in palm oil. Other lipid classes present in crude palm oil, such as phospholipids and galactolipids, are very low in abundance. These low-abundance lipids constitute key intermediates in lipid biosynthesis. In this study, we applied multiple lipidomic approaches, including high-sensitivity and high-specificity multiple reaction monitoring, to comprehensively quantify individual lipid species in crude palm oil. We also established a new liquid chromatography-coupled mass spectrometry method that allows direct quantification of low-abundance galactolipids in palm oil without the need for sample pretreatrnent. As crude palm oil contains large amounts of neutral lipids, our direct-detection method circumvents many of the challenges encountered with conventional lipid quantification methods. This approach allows direct measurement of lipids with no hassle during sample preparation and is more accurate and precise compared with other methods.展开更多
This paper presented a study on the strength and chloride resistance of mortars made with ternary blends of ordinary Portland cement (OPC), ground palm oil fuel ash (POA), and classified fly ash (FA). The mortar...This paper presented a study on the strength and chloride resistance of mortars made with ternary blends of ordinary Portland cement (OPC), ground palm oil fuel ash (POA), and classified fly ash (FA). The mortar mixtures were made with Portland cement type I containing 0-40wt% FA and POA. FA and POA with 1wt%-3wt% retained on a sieve No.325 were used. The compressive strength and rapid chloride penetration depth of mortars were determined. The results reveal that the use of ternary blended cements produces good strength mortars. The use of the blend of FA and POA also produces high strength mortars and excellent resistance to chloride penetration owing to the synergic effect of FA and POA. A mathematical analysis and two-parameter polynomial model were presented to predict the compressive strength. The mathematical model correlated well with the experimental results. The computer 3-D graphics of strength of the ternary blended mortars were also constructed and could be used to aid the understanding and the proportioning of the blended system.展开更多
The transesterification of palm oil and methanol catalyzed by Br?nsted acidic ionic liquids was investigated. Four eco-friendly Br?nsted acidic ionic liquids were prepared and their structures were characterized by NM...The transesterification of palm oil and methanol catalyzed by Br?nsted acidic ionic liquids was investigated. Four eco-friendly Br?nsted acidic ionic liquids were prepared and their structures were characterized by NMR, FT-IR and TG–DTG. The results demonstrated that [CyN_(1,1)PrSO_3H][p-TSA] was more efficient than the other ionic liquids and chosen as catalyst for further research. The influences of various reaction parameters on the conversion of palm oil to biodiesel were performed, and the orthogonal test was investigated to seek the optimum reaction conditions, which were illustrated as follows: methanol to oil mole ratio of 24:1, catalyst dosage of 3.0 wt% of oil, reaction temperature of 120 °C, reaction time of 150 min, and the biodiesel yield achieved 98.4%. In addition, kinetic study was established for the conversion process, with activation energy and preexponential factor of 122.93 k J·mol^(-1) and 1.83 × 10^(15), respectively. Meanwhile, seven-time recycling runs of ionic liquid were completed with ignorable loss of its catalyst activity. The refined biodiesel met the biodiesel standard EN 14214.展开更多
The study was attempted to produce activated carbons from palm oil mill effluent (POME) sludge. The adsorption capacity of the activated carbons produced was evaluated in aqueous solution of phenol. Two types of act...The study was attempted to produce activated carbons from palm oil mill effluent (POME) sludge. The adsorption capacity of the activated carbons produced was evaluated in aqueous solution of phenol. Two types of activation were followed, namely, thermal activation at 300, 500 and 800%, and physical activation at 150% (boiling treatment). A control (raw POME sludge) was used to compare the adsorption capacity of the activated carbons produced. The results indicated that the activation temperature of 800℃ showed maximum absorption capacity by the activated carbon (POME 800) in aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon of POME 800. It was observed that the adsorption capacity was higher at lower values ofpH (2--3) and higher value of initial concentration of phenol (200--300 mg/L), The equilibrium data were fitted by the Langmuir and Freundlich adsorption isotherms. The adsorption of phenol onto the activated carbon POME 800 was studied in terms of pseudo-first and second order kinetics to predict the rate constant and equilibrium capacity with the effect of initial phenol concentrations. The rate of adsorption was found to be better correlation for the pseudo-second order kinetics compared to the first order kinetics.展开更多
Objective Effects of red palm oil on major plasma carotenoids, tocopherol, retinol and serum lipids were evaluated when used in Chinese diet. Methods Red palm oil group (RPO) composed of 20 male subjects(aged 18-32) a...Objective Effects of red palm oil on major plasma carotenoids, tocopherol, retinol and serum lipids were evaluated when used in Chinese diet. Methods Red palm oil group (RPO) composed of 20 male subjects(aged 18-32) and soybean oil group (SBO) composed of 22 male subjects (aged 18-32). Dietary fat provided about 28% of total calories, and the test oil accounted for about 60% of total dietary fat. In the 3 weeks of pretest period, diets were prepared with soybean oil, and then in the next 6 weeks subjects in each group consumed the diet prepared by test oil. Results Plasma α-carotene, β-carotene and lycopene concentration of RPO group significantly increased at the time of interim (21 days) and of the end (42 days) (P<0.05), and α-tocopherol concentration significantly increased at the time of the end (42 days) in this study. Though Chinese plasma retinol level was relatively low when compared with that of Westerners, red palm oil diet showed no significant effect on adult Chinese plasma retinol level. Serum concentration of total cholesterol, triglyceride, high density lipoprotein cholesterol, apolipoprotein AI and apolipoprotein B of all subjects showed no significant changes in RPO group during the study. Conclusions The data in our study suggest that red palm oil is a good source of carotenoids and vitamin E when used in Chinese diet preparation, and it can significantly increase plasma concentration of a-carotene, α-carotene, lycopene and β-tocopherol.展开更多
In this study, two commercially available superoxide scavengers, tetrakis (1-methyl-4-pyridyl) porphyrin (Mn[III]TMPyP) and superoxide dismutase (SOD), as well as red palm oil (RPO), a natural vegetable oil, h...In this study, two commercially available superoxide scavengers, tetrakis (1-methyl-4-pyridyl) porphyrin (Mn[III]TMPyP) and superoxide dismutase (SOD), as well as red palm oil (RPO), a natural vegetable oil, had been used to investigate their possible in vitro effects against the toxic effects of superoxide (O2+) on human sperm motility. Semen samples were obtained from 12 normozoospermic healthy volunteer donors aged between 19 and 23 years. The O2+donor 2,3-dimetoxyl-l,4-naphthoquinone (DMNQ) (2.5 μmol· L^-1-100 μmol· L^-1) was added to normozoospermic post-swim-up sperm in the presence or absence of Mn(III)TMPyP (50 μmol· L^-1), SOD (50 IU) or RPO (0.1% or 0.5%). Computer-assisted semen analysis was used to analyze various motility parameters. The parameters of interest were percentage of motile cells, progressive motility, rapid cells and static cells. Concentrations of higher than 25 μmol· L^-1 DMNQ were detrimental to sperm motility. Mn(III)TMPyP was able to attenuate the effect of O2+ on the motility parameters. In vitro addition of SOD and RPO showed harmful effects on sperm motility.展开更多
Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal met...Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.展开更多
Lactobacillus plantarum SF5.6 is one of the lactic acid bacteria (LAB) that has the highest ability of molasses melanoidin (MM) decolorization among the 2114 strains of LAB. The strains were isolated from spoilage...Lactobacillus plantarum SF5.6 is one of the lactic acid bacteria (LAB) that has the highest ability of molasses melanoidin (MM) decolorization among the 2114 strains of LAB. The strains were isolated from spoilage, pickle fruit and vegetable, soil and sludge from the wastewater treatment system by using technical step of enrichment, primary screening and secondary screening. This LAB strain SF5.6 was identified by 16S rDNA analysis and carbohydrate fermentation (API 50 CH). The top five LAB strains having high MM decolorization ( 55%), namely TBSF5.8-1, TBSF2.1-1, TBSF2.1, FF4A and SF5.6 were selected to determine the optimal condition. It was found that the temperature at 30°C under facultative conditions in GPY-MM medium (0.5% glucose, 0.1% peptone, 0.1% yeast extract, 0.1% sodium acetate, 0.05% MgSO4 and 0.005% MnCl2 in MM solution at pH 6) giving a high microbial growth and MM decolorization for all five strains. It was noticed that the decolorization of MM by LAB strains might be cell growth associated. L. plantarum SF5.6 grew rapidly within one day while the other strains took 2–3 days. This L. plantarum SF5.6 could rapidly decolorize MM to 60.91% without any lag phase, and it also had the ability to remove 34.00% phenolic compounds and 15.88% color from treated palm oil mill effluent.展开更多
The solubility of red palm oil (RPO) in supercritical carbon dioxide (scCO2) was determined using a dynamic method at 8.5-25 MPa and, 313.15-333.15 K and at a fixed scCO2 flow rate of 2.9 g. mn -1 using a full fac...The solubility of red palm oil (RPO) in supercritical carbon dioxide (scCO2) was determined using a dynamic method at 8.5-25 MPa and, 313.15-333.15 K and at a fixed scCO2 flow rate of 2.9 g. mn -1 using a full factorial design. The solubility was determined under low pressures and temperatures as a preliminary study for RPO par- ticle formation using scCO2. The solubility of RPO was 0.5-11.3 mg. (g CO2) -1 and was significantly affected by the pressure and temperature. RPO solubility increased with pressure and decreased with temperature. The Adachi-Lu model showed the best-fit for RPO solubility data with an average relative deviation of 14% with a high coefficient of determination, R2 of 0.9667, whereas the Peng-Robinson equation of state thermodynamic model recorded deviations of 17%-30%.展开更多
Dietary oils have critical influences on human health,and thermally cooking or frying modify the components and nutritional functions of oils.Palm oil was the most widely used oil in food processing industry,but its h...Dietary oils have critical influences on human health,and thermally cooking or frying modify the components and nutritional functions of oils.Palm oil was the most widely used oil in food processing industry,but its health effects remain debatable.In the current study,we aimed to compare the effects of thermally oxidized palm oil and canola oil on gut microbiota.Palm oil or canola oil were heated at 180°C for 10 h to prepare high-fat diets.Rats were fed high-fat diets for 3 months,and hematological properties,gut microflora composition and intestinal gene expression were examined.The results indicated that heated canola oil consumption elevated plasma total cholesterol and LDL-c levels compared with unheated canola oil,but heated palm oil do not had these effects;and consumption of heated palm oil significantly elevated the relative abundance of Lactobacillucs and Roseburia in gut,compared with non-heated palm oil or two canola oil groups.Moreover,intestinal expression of IL-22 was increased in heated palm oil fed animal,though ZO-1 and GPR41 were reduced.In conclusion,heating process may enhance the effects of palm oil on proliferation of probiotics Lactobacillucs,and weaken the effects of canola oil on cholesterol transport and metabolism.展开更多
The objective of this research was to develop a catalyst for efficient cracking of palm oil to produce biogasoline. Mesoporous alumino-silicate, A1MCM-41, was synthesized by hydrothermal treatment to the mixture of so...The objective of this research was to develop a catalyst for efficient cracking of palm oil to produce biogasoline. Mesoporous alumino-silicate, A1MCM-41, was synthesized by hydrothermal treatment to the mixture of sodium silicate, sodium aluminates, TMAOH (tetramethylammonium hydroxide), and CTMAB (cetyltrimethylammonium bromide), in Aquadest as a solvent. This process was carried out within 12 h of aging time at 100 ℃ in a teflon-lined stainless steel autoclave. The solid phase was filtered, then washed with distilled water, and dried in an oven at 80 ℃ for 24 h. The surfactant CTMAB was removed by calcination at 540 ℃ for 6 h using heating rate of 2 ℃/min. The as-synthesized and calcined powder was characterized by using FTIR (frontier transform infra red spectroscopy), XRD (X-ray diffraction), and TEM (transmission electron microscopy) methods. The product of AIMCM-41 was then converted into H-AIMCM-41 by ion exchanged in 0.5 M of NHaCI solution followed by filtration, drying at 80 ℃ for 24 h, and calcination at 540 ℃. The product of catalyst was used for catalytic conversion of PO (palm oil) to biogasoline in a fixed bed reactor at 200-400 ℃, under atmospheric pressure, and ratio of PO to catalyst was 200. The product of cracking was then distilled at 60 ℃ and analyzed using GC-MS (gas liquid chromatography - mass spectrometry) method. Result of the works shows that the catalyst had 4.49 nm of lattice parameter, and the cracking of PO gave 56.6% conversions with 29.4% selectivity to biogasoline like fraction.展开更多
Machining is a mechanical process where excess material from a work is removed to produce a product. At the moment different ferrous, non-ferrous materials and industrial blue wax have been used for prototype models. ...Machining is a mechanical process where excess material from a work is removed to produce a product. At the moment different ferrous, non-ferrous materials and industrial blue wax have been used for prototype models. However such materials is very expensive. Hence an attempt is made to substitute these materials by the palm oil based bio-wax produced in Malaysia. In this research, the authors will analyze and investigate whether there is a possibility to use the palm oil based bio-wax material to substitute with the petroleum based industrial-wax. Experimental analyses are carried out to investigate the capability and the strength of the palm oil based bio-wax material. The matrix blends were prepared of fatty acids from oleo-chemicals, palm oil wax, natural ash fibre and low linear density polyethylene (LLDPE) by stirring and melt-mixing. Sample b!ends are machined with lathe machining process. The sample blends showed there was no built edge formation and good smooth surface production.展开更多
BACKGROUND: A large amount of endotoxin can be detected in the peripheral venous blood of patients with liver cirrhosis, contributing to the pathogenesis of hepatotoxicity because of its role in oxidative stress. The...BACKGROUND: A large amount of endotoxin can be detected in the peripheral venous blood of patients with liver cirrhosis, contributing to the pathogenesis of hepatotoxicity because of its role in oxidative stress. The present study aimed to test the effect of the supplementation with red palm oil(RPO), which is a natural oil obtained from oil palm fruit(Elaeis guineensis) rich in natural fat-soluble tocopherols, tocotrienols and carotenoids, on lipid peroxidation and endotoxemia with plasma endotoxin-inactivating capacity, proinflammatory cytokines profile, and monocyte tissue factor in patients with chronic liver disease. METHODS: The study group consisted of sixty patients(34 males and 26 females; mean age 62 years, range 54-75) with Child A/B, genotype 1 HCV-related cirrhosis without a history of ethanol consumption, randomly enrolled into an 8-week oral daily treatment with either vitamin E or RPO. All patients had undergone an upper gastrointestinal endoscopy 8 months before, and 13 out of them showed esophageal varices.RESULTS: Both treatments significantly decreased erythrocyte malondialdehyde and urinary isoprostane output, only RPO significantly affected macrophage-colony stimulating factor and monocyte tissue factor. Liver ultrasound imaging did not show any change. CONCLUSIONS: RPO beneficially modulates oxidative stress and, not least, downregulates macrophage/monocyte inflammatory parameters. RPO can be safely advised as a valuable nutritional implementation tool in the management of chronic liver diseases.展开更多
基金supporting the research project under the USK Leading Research Program-Doctoral Acceleration Scheme(PRRU-PD,Grant Number:444/UN11.2.1/PG.01.03/SPK/PTNBH/2024)coordinated by the Institute for Research and Community Services(LPPM-USK).
文摘As the world’s largest palm oil producer,Indonesia significantly benefits from its palm oil industry but also faces serious environmental challenges from palm oil mill effluent(POME)-a high-strength wastewater containing substantial organic matter,nutrients,suspended solids,and various chemical compounds.Sustainable and effective wastewater treatment strategies are urgently needed to address this issue.This review presents a comprehensive analysis of existing POME treatment technologies,including anaerobic digestion(AD),advanced oxidation processes(AOPs),membrane filtration,adsorption,phytoremediation,and microalgae-based systems.Each method is examined in terms of treatment efficiency,operational feasibility,and potential for imple-mentation under Indonesian conditions.While advanced processes,such as AOPs and membrane filtration,achieve high pollutant removal,they are often limited by operational costs.In contrast,biological approaches,such as AD and phytoremediation,offer both environmental benefits and economic value through the recovery of biogas,biofertilizers,and biomass.This review highlights the potential for integrating wastewater purification with resource recovery and valorization,supporting a shift toward more circular and sustainable management of POME.The insights provided are intended to guide future research,inform policy decisions,and facilitate the industrial adoption of optimized treatment systems.
文摘Malaysia,as one of the highest producers of palm oil globally and one of the largest exporters,has a huge potential to use palmoil waste to generate electricity since an abundance of waste is produced during the palmoil extraction process.In this paper,we have first examined and compared the use of palmoil waste as biomass for electricity generation in different countries with reference to Malaysia.Some areas with default accessibility in rural areas,like those in Sabah and Sarawak,require a cheap and reliable source of electricity.Palm oil waste possesses the potential to be the source.Therefore,this research examines the cost-effective comparison between electricity generated frompalm oil waste and standalone diesel electric generation in Marudi,Sarawak,Malaysia.This research aims to investigate the potential electricity generation using palm oil waste and the feasibility of implementing the technology in rural areas.To implement and analyze the feasibility,a case study has been carried out in a rural area in Sarawak,Malaysia.The finding shows the electricity cost calculation of small towns like Long Lama,Long Miri,and Long Atip,with ten nearby schools,and suggests that using EFB from palm oil waste is cheaper and reduces greenhouse gas emissions.The study also points out the need to conduct further research on power systems,such as energy storage andmicrogrids,to better understand the future of power systems.By collecting data through questionnaires and surveys,an analysis has been carried out to determine the approximate cost and quantity of palm oil waste to generate cheaper renewable energy.We concluded that electricity generation from palm oil waste is cost-effective and beneficial.The infrastructure can be a microgrid connected to the main grid.
基金The contract No.PRJ-395/DPKS/2022 or 2383/PKS/ITS/2022 on 14 November 2022.
文摘The total replacement of old fossil fuels poses obstacles,making the production of efficient biogasoline vital.Despite its potential as an environmentally friendly fossil fuel substitute,the life cycle assessment(LCA)of palm oil-derived biogasoline remains underexplored.This study investigated the production of biogasoline fromcrude palm oil(CPO)based biorefinery using catalytic cracking over mesoporousγ-Al_(2)O_(3) catalyst and LCA analysis.High selectivity of converting CPO into biogasoline was achieved by optimizing catalytic cracking parameters,including catalyst dose,temperature,and contact time.γ-Al_(2)O_(3) and CPO were characterized by several methods to study the physical and chemical properties.The physical properties of biogasoline,such as density,calorific value,viscosity,and flash point,were investigated.An overall yield of 60.11%was achieved after catalytic cracking produced several C5-C11 short-chain hydrocarbons.Additionally,this research proposes innovative emission reduction strategies,including waste-to-biogasoline conversion and the use of biodegradable feedstocks that enhance the sustainability of biogasoline production.LCA ofγ-Al_(2)O_(3)’s energy and environmental implications reveals minor effects on global warming(0.0068%)and freshwater ecotoxicity(0.187%).LCAs show a 0.085%impact in the energy sector.This focus on both ecological impacts and practical mitigation strategies deepens the understanding of biogasoline production.
基金National Natural Science Foundation of China(22278084)State Key Laboratory of Heavy Oil Processing(SKLHOP202402003)for financing this research.
文摘To achieve palm oil conversion along with a high yield of long‐chain alkane,a series of NiFe layered double oxide catalysts were prepared and employed in the deoxygenation of palm oil.The layered structure of these catalysts was confirmed by XRD and SEM analyses,and Ni and Fe species existed primarily in the forms of Ni^(2+)and Fe^(3+),respectively.It was found that Ni/Fe molar ratio influenced the H_(2)reducibility and surface properties of NiFe catalysts.Specifically,Ni_(2)Fe‐LDO and Ni_(3)Fe‐LDO exhibited higher reducibility under H_(2)atmosphere.Moreover,the Ni_(2)Fe‐LDO catalyst contained a higher concentration of surface oxygen species(Osurf).Deoxygenation results demonstrated that the Ni_(2)Fe‐LDO catalyst achieved superior palm oil conversion,higher liquid product yield and enhanced selectivity toward C_(15)–C_(18)hydrocarbons compared to other catalysts.This improved performance was attributed to its higher hydrogen dissociation activity and enhanced adsorption capacity for palm oil molecules.Furthermore,reaction condition studies revealed that palm oil was completely converted,yielding 86.8%liquid product with 81.8%selectivity of C_(15)–C_(18)hydrocarbons at 350℃under 7 MPa H_(2)pressure.This finding provides an insight into the development of efficient catalysts for the deoxygenation of fatty compounds to biofuels.
基金supports from Prince of Songkla University(an annual research grant for fiscal years 2008-2010),the Center of Excellence for Innovation in Chemistry(PERCH-CIC),Office of the Higher Education Commission,Ministry of Education,Thailandthe Chaipattana Foundation under the support of the King of Thailand
文摘Mixed crude palm oil (MCPO), the mixture of palm fiber oil and palm kernel oil, has become of great interest as a renewable energy source. It can be easily extracted from whole dried palm fruits. In the present work, the degummed, deacidified MCPO was blended in petroleum diesel at portions of 30% and 40% by volume and then tested in agricultural diesel engines for long term usage. The particulates from the exhaust of the engines were collected every 500 hr using a four-stage cascade air sampler. The 50% cut-off aerodynamic diameters for the first three stages were 10, 2.5 and 1μm, while the last stage collected all particles smaller than 1 μm. Sixteen particle bounded polycyclic aromatic hydrocarbons (PAHs) were analyzed using a high performance liquid chromatography. The results indicated that the size distribution of particulate matter was in the accmnulation mode and the pattern of total PAHs associated with fine-particles (〈 1 μm) showed a dominance of larger molecular weight PAHs (4--6 aromatic rings), especially pyrene. The mass median diameter, PM and total PAH concentrations decreased when increasing the palm oil content, but increased when the running hours of the engine were increased. In addition, Commercial petroleum diesel (PB0) gave the highest value of carcinogenic potency equivalent (BaPeq) for all particle size ranges. As the palm oil was increased, the; BaPeq decreased gradually. Therefore the degununed-deacidified MCPO blends are recommended for diesel substitute.
文摘The climate change and limitation of natural resources becomes main obstacle for the global economical development. So, the Vietnamese Government is very much concerned with reduction of harmful gas discharging from the inland-water way ships. To overcome the problems, there are many counter-measures proposed such as: renovation of machinery and equipment, using re-creative energy and so on. The author's idea is to find a suitable method which can be applied on board of the inland-water ships to reduce discharging toxic gas by using blended palm oil as alternative fuel for marine diesel engines. Due to some disadvantages of the bended palm oil in comparison with traditional DO (diesel oil), such as: low freezing point, high viscosity, low stability of blended fue, therefore somehow, the blended palm oil must be made a ship directly on board. With this idea, the author has designed and made agitate mixing equipment working on-line with fuel supply system of a diesel engine. The mixing equipment, then, has been tested at shore-side laboratory as well as on board ships. The research results showed that the fuel mixture (palm oil-DO) made by this mixing equipment is fully usable to replace traditional DO for marine diesel engines installed on board ships of inland water way in Vietnam. The Vietnamese Government accepted the research results as prerequisite to devise specific and practical action plans to reduce the pollution from the inland water way ships in coming years.
文摘A bench-scale expanded granular sludge bed (EGSB) reactor was applied to the treatment of palm oil mill effluent (POME). The reactor had been operated continuously at 35℃ for 514 d, with organic loading rate (OLR) increased from 1.45 to 17.5 kg COD/(m^3·d). The results showed that the EGSB reactor had good performance in terms of COD removal on the one hand, high COD removal of 91% was obtained at two days' of hydraulic retention time (HRT), and the highest OLR of 17.5 kg COD/(m^3·d). On the other hand, only 46% COD in raw POME was transformed into biogas in which the methane content was about 70% (V/V). A 30-d intermittent experiment indicated that the maximum transformation potential of organic matter in raw POME into methane was 56%. Volatile fatty acid (VFA) accumulation was observed in the later operation stage, and this was settled by supplementing trace metal elements. On the whole, the system exhibited good stability in terms of acidity and alkalinity. Finally, the operational problems inherent in the laboratory scale experiment and the corresponding countermeasures were also discussed.
文摘Palm oil is currently the leading edible oil consumed worldwide. Triacylglycerol (TAG) and diacylglycerol (DAG) are the dominant lipid classes in palm oil. Other lipid classes present in crude palm oil, such as phospholipids and galactolipids, are very low in abundance. These low-abundance lipids constitute key intermediates in lipid biosynthesis. In this study, we applied multiple lipidomic approaches, including high-sensitivity and high-specificity multiple reaction monitoring, to comprehensively quantify individual lipid species in crude palm oil. We also established a new liquid chromatography-coupled mass spectrometry method that allows direct quantification of low-abundance galactolipids in palm oil without the need for sample pretreatrnent. As crude palm oil contains large amounts of neutral lipids, our direct-detection method circumvents many of the challenges encountered with conventional lipid quantification methods. This approach allows direct measurement of lipids with no hassle during sample preparation and is more accurate and precise compared with other methods.
文摘This paper presented a study on the strength and chloride resistance of mortars made with ternary blends of ordinary Portland cement (OPC), ground palm oil fuel ash (POA), and classified fly ash (FA). The mortar mixtures were made with Portland cement type I containing 0-40wt% FA and POA. FA and POA with 1wt%-3wt% retained on a sieve No.325 were used. The compressive strength and rapid chloride penetration depth of mortars were determined. The results reveal that the use of ternary blended cements produces good strength mortars. The use of the blend of FA and POA also produces high strength mortars and excellent resistance to chloride penetration owing to the synergic effect of FA and POA. A mathematical analysis and two-parameter polynomial model were presented to predict the compressive strength. The mathematical model correlated well with the experimental results. The computer 3-D graphics of strength of the ternary blended mortars were also constructed and could be used to aid the understanding and the proportioning of the blended system.
基金Supported by the National Natural Science Foundation of China(21576053)the Natural Science Foundation of Fujian Province(2016J01689)the Young Teacher Education Research Foundation of Fujian Province(JAT160056)
文摘The transesterification of palm oil and methanol catalyzed by Br?nsted acidic ionic liquids was investigated. Four eco-friendly Br?nsted acidic ionic liquids were prepared and their structures were characterized by NMR, FT-IR and TG–DTG. The results demonstrated that [CyN_(1,1)PrSO_3H][p-TSA] was more efficient than the other ionic liquids and chosen as catalyst for further research. The influences of various reaction parameters on the conversion of palm oil to biodiesel were performed, and the orthogonal test was investigated to seek the optimum reaction conditions, which were illustrated as follows: methanol to oil mole ratio of 24:1, catalyst dosage of 3.0 wt% of oil, reaction temperature of 120 °C, reaction time of 150 min, and the biodiesel yield achieved 98.4%. In addition, kinetic study was established for the conversion process, with activation energy and preexponential factor of 122.93 k J·mol^(-1) and 1.83 × 10^(15), respectively. Meanwhile, seven-time recycling runs of ionic liquid were completed with ignorable loss of its catalyst activity. The refined biodiesel met the biodiesel standard EN 14214.
文摘The study was attempted to produce activated carbons from palm oil mill effluent (POME) sludge. The adsorption capacity of the activated carbons produced was evaluated in aqueous solution of phenol. Two types of activation were followed, namely, thermal activation at 300, 500 and 800%, and physical activation at 150% (boiling treatment). A control (raw POME sludge) was used to compare the adsorption capacity of the activated carbons produced. The results indicated that the activation temperature of 800℃ showed maximum absorption capacity by the activated carbon (POME 800) in aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon of POME 800. It was observed that the adsorption capacity was higher at lower values ofpH (2--3) and higher value of initial concentration of phenol (200--300 mg/L), The equilibrium data were fitted by the Langmuir and Freundlich adsorption isotherms. The adsorption of phenol onto the activated carbon POME 800 was studied in terms of pseudo-first and second order kinetics to predict the rate constant and equilibrium capacity with the effect of initial phenol concentrations. The rate of adsorption was found to be better correlation for the pseudo-second order kinetics compared to the first order kinetics.
文摘Objective Effects of red palm oil on major plasma carotenoids, tocopherol, retinol and serum lipids were evaluated when used in Chinese diet. Methods Red palm oil group (RPO) composed of 20 male subjects(aged 18-32) and soybean oil group (SBO) composed of 22 male subjects (aged 18-32). Dietary fat provided about 28% of total calories, and the test oil accounted for about 60% of total dietary fat. In the 3 weeks of pretest period, diets were prepared with soybean oil, and then in the next 6 weeks subjects in each group consumed the diet prepared by test oil. Results Plasma α-carotene, β-carotene and lycopene concentration of RPO group significantly increased at the time of interim (21 days) and of the end (42 days) (P<0.05), and α-tocopherol concentration significantly increased at the time of the end (42 days) in this study. Though Chinese plasma retinol level was relatively low when compared with that of Westerners, red palm oil diet showed no significant effect on adult Chinese plasma retinol level. Serum concentration of total cholesterol, triglyceride, high density lipoprotein cholesterol, apolipoprotein AI and apolipoprotein B of all subjects showed no significant changes in RPO group during the study. Conclusions The data in our study suggest that red palm oil is a good source of carotenoids and vitamin E when used in Chinese diet preparation, and it can significantly increase plasma concentration of a-carotene, α-carotene, lycopene and β-tocopherol.
文摘In this study, two commercially available superoxide scavengers, tetrakis (1-methyl-4-pyridyl) porphyrin (Mn[III]TMPyP) and superoxide dismutase (SOD), as well as red palm oil (RPO), a natural vegetable oil, had been used to investigate their possible in vitro effects against the toxic effects of superoxide (O2+) on human sperm motility. Semen samples were obtained from 12 normozoospermic healthy volunteer donors aged between 19 and 23 years. The O2+donor 2,3-dimetoxyl-l,4-naphthoquinone (DMNQ) (2.5 μmol· L^-1-100 μmol· L^-1) was added to normozoospermic post-swim-up sperm in the presence or absence of Mn(III)TMPyP (50 μmol· L^-1), SOD (50 IU) or RPO (0.1% or 0.5%). Computer-assisted semen analysis was used to analyze various motility parameters. The parameters of interest were percentage of motile cells, progressive motility, rapid cells and static cells. Concentrations of higher than 25 μmol· L^-1 DMNQ were detrimental to sperm motility. Mn(III)TMPyP was able to attenuate the effect of O2+ on the motility parameters. In vitro addition of SOD and RPO showed harmful effects on sperm motility.
文摘Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.
文摘Lactobacillus plantarum SF5.6 is one of the lactic acid bacteria (LAB) that has the highest ability of molasses melanoidin (MM) decolorization among the 2114 strains of LAB. The strains were isolated from spoilage, pickle fruit and vegetable, soil and sludge from the wastewater treatment system by using technical step of enrichment, primary screening and secondary screening. This LAB strain SF5.6 was identified by 16S rDNA analysis and carbohydrate fermentation (API 50 CH). The top five LAB strains having high MM decolorization ( 55%), namely TBSF5.8-1, TBSF2.1-1, TBSF2.1, FF4A and SF5.6 were selected to determine the optimal condition. It was found that the temperature at 30°C under facultative conditions in GPY-MM medium (0.5% glucose, 0.1% peptone, 0.1% yeast extract, 0.1% sodium acetate, 0.05% MgSO4 and 0.005% MnCl2 in MM solution at pH 6) giving a high microbial growth and MM decolorization for all five strains. It was noticed that the decolorization of MM by LAB strains might be cell growth associated. L. plantarum SF5.6 grew rapidly within one day while the other strains took 2–3 days. This L. plantarum SF5.6 could rapidly decolorize MM to 60.91% without any lag phase, and it also had the ability to remove 34.00% phenolic compounds and 15.88% color from treated palm oil mill effluent.
基金supported by Geran Putra IPS(Vote No.:9469400),University Putra Malaysia
文摘The solubility of red palm oil (RPO) in supercritical carbon dioxide (scCO2) was determined using a dynamic method at 8.5-25 MPa and, 313.15-333.15 K and at a fixed scCO2 flow rate of 2.9 g. mn -1 using a full factorial design. The solubility was determined under low pressures and temperatures as a preliminary study for RPO par- ticle formation using scCO2. The solubility of RPO was 0.5-11.3 mg. (g CO2) -1 and was significantly affected by the pressure and temperature. RPO solubility increased with pressure and decreased with temperature. The Adachi-Lu model showed the best-fit for RPO solubility data with an average relative deviation of 14% with a high coefficient of determination, R2 of 0.9667, whereas the Peng-Robinson equation of state thermodynamic model recorded deviations of 17%-30%.
基金Hubei Provincial Natural Science Foundation of China(Grant No.2017CFB275)National Natural Science Foundation of China(Grant Nos.31271855 and 81402669)the Fundamental Research Funds for the Wuhan Polytechnic University(2019J04).
文摘Dietary oils have critical influences on human health,and thermally cooking or frying modify the components and nutritional functions of oils.Palm oil was the most widely used oil in food processing industry,but its health effects remain debatable.In the current study,we aimed to compare the effects of thermally oxidized palm oil and canola oil on gut microbiota.Palm oil or canola oil were heated at 180°C for 10 h to prepare high-fat diets.Rats were fed high-fat diets for 3 months,and hematological properties,gut microflora composition and intestinal gene expression were examined.The results indicated that heated canola oil consumption elevated plasma total cholesterol and LDL-c levels compared with unheated canola oil,but heated palm oil do not had these effects;and consumption of heated palm oil significantly elevated the relative abundance of Lactobacillucs and Roseburia in gut,compared with non-heated palm oil or two canola oil groups.Moreover,intestinal expression of IL-22 was increased in heated palm oil fed animal,though ZO-1 and GPR41 were reduced.In conclusion,heating process may enhance the effects of palm oil on proliferation of probiotics Lactobacillucs,and weaken the effects of canola oil on cholesterol transport and metabolism.
文摘The objective of this research was to develop a catalyst for efficient cracking of palm oil to produce biogasoline. Mesoporous alumino-silicate, A1MCM-41, was synthesized by hydrothermal treatment to the mixture of sodium silicate, sodium aluminates, TMAOH (tetramethylammonium hydroxide), and CTMAB (cetyltrimethylammonium bromide), in Aquadest as a solvent. This process was carried out within 12 h of aging time at 100 ℃ in a teflon-lined stainless steel autoclave. The solid phase was filtered, then washed with distilled water, and dried in an oven at 80 ℃ for 24 h. The surfactant CTMAB was removed by calcination at 540 ℃ for 6 h using heating rate of 2 ℃/min. The as-synthesized and calcined powder was characterized by using FTIR (frontier transform infra red spectroscopy), XRD (X-ray diffraction), and TEM (transmission electron microscopy) methods. The product of AIMCM-41 was then converted into H-AIMCM-41 by ion exchanged in 0.5 M of NHaCI solution followed by filtration, drying at 80 ℃ for 24 h, and calcination at 540 ℃. The product of catalyst was used for catalytic conversion of PO (palm oil) to biogasoline in a fixed bed reactor at 200-400 ℃, under atmospheric pressure, and ratio of PO to catalyst was 200. The product of cracking was then distilled at 60 ℃ and analyzed using GC-MS (gas liquid chromatography - mass spectrometry) method. Result of the works shows that the catalyst had 4.49 nm of lattice parameter, and the cracking of PO gave 56.6% conversions with 29.4% selectivity to biogasoline like fraction.
文摘Machining is a mechanical process where excess material from a work is removed to produce a product. At the moment different ferrous, non-ferrous materials and industrial blue wax have been used for prototype models. However such materials is very expensive. Hence an attempt is made to substitute these materials by the palm oil based bio-wax produced in Malaysia. In this research, the authors will analyze and investigate whether there is a possibility to use the palm oil based bio-wax material to substitute with the petroleum based industrial-wax. Experimental analyses are carried out to investigate the capability and the strength of the palm oil based bio-wax material. The matrix blends were prepared of fatty acids from oleo-chemicals, palm oil wax, natural ash fibre and low linear density polyethylene (LLDPE) by stirring and melt-mixing. Sample b!ends are machined with lathe machining process. The sample blends showed there was no built edge formation and good smooth surface production.
基金supported by a generous and unbiased grant from the Malaysian Palm Oil Board,Bandar Baru Bangi,43000 Kajang,Selangor,Malaysia
文摘BACKGROUND: A large amount of endotoxin can be detected in the peripheral venous blood of patients with liver cirrhosis, contributing to the pathogenesis of hepatotoxicity because of its role in oxidative stress. The present study aimed to test the effect of the supplementation with red palm oil(RPO), which is a natural oil obtained from oil palm fruit(Elaeis guineensis) rich in natural fat-soluble tocopherols, tocotrienols and carotenoids, on lipid peroxidation and endotoxemia with plasma endotoxin-inactivating capacity, proinflammatory cytokines profile, and monocyte tissue factor in patients with chronic liver disease. METHODS: The study group consisted of sixty patients(34 males and 26 females; mean age 62 years, range 54-75) with Child A/B, genotype 1 HCV-related cirrhosis without a history of ethanol consumption, randomly enrolled into an 8-week oral daily treatment with either vitamin E or RPO. All patients had undergone an upper gastrointestinal endoscopy 8 months before, and 13 out of them showed esophageal varices.RESULTS: Both treatments significantly decreased erythrocyte malondialdehyde and urinary isoprostane output, only RPO significantly affected macrophage-colony stimulating factor and monocyte tissue factor. Liver ultrasound imaging did not show any change. CONCLUSIONS: RPO beneficially modulates oxidative stress and, not least, downregulates macrophage/monocyte inflammatory parameters. RPO can be safely advised as a valuable nutritional implementation tool in the management of chronic liver diseases.