The Changning-Menglian suture in SW Yunnan has been accepted as the Paleotethyan main ocean. However, it has been a matter of debate as to its southerly extension in NW Thailand(the Chiang Mai-Chiang Rai vs. Nan-Utta...The Changning-Menglian suture in SW Yunnan has been accepted as the Paleotethyan main ocean. However, it has been a matter of debate as to its southerly extension in NW Thailand(the Chiang Mai-Chiang Rai vs. Nan-Uttaradit zone). Our field investigation identified the high-iron basaltic rocks in the Chiang Dao Permian standard profile in NW Thailand. The high-iron rocks provide crucial records for understanding the controversy on the location of Paleotethyan main ocean in NW Thailand. The Early Permian high-iron samples show extremely high Fe Ot(20.96 wt.%–25.56 wt.%) and TiO2(6.07 wt.%–6.34 wt.%) and low SiO2(38.54 wt.%–43.46 wt.%) and Mg O(1.61 wt.%–2.40 wt.%) contents. Such characteristics are similar to those of the Fenner differentiation trend rarely observed in the natural system, distinct from those of the "normal" Bowen trend. Their chondrite- normalized REE and primitive mantle-normalized patterns are generally similar to those of typical OIB. The initial 87Sr/86 Sr ratios and εNd(t) values range from 0.704 677 to 0.705 103 and 3.16 to 3.48, respectively, falling near the field of typical OIB(oceanic-island basalt). These data synthetically suggest that the Chiang Dao high-iron rocks are the products of high-degree partial melting of peridotite with Fe-rich eclogitic blobs/streaks in response to a seamount setting. In comparison with the Permian tectonic setting in SW Yunnan and NW Thailand, it is inferred that the Paleotethyan Ocean was located between the Shan-Thai terrane of Sibumasu and Sukhothai arc along the Inthanon zone of the Chiang Mai-Chiang Rai rather than Nan-Uttaradit zones.展开更多
The Late Paleozoic-Early Mesozoic sedimentary system of the Luang Prabang Paleotethyan back-arc basin in northern Laos is important for investigating sedimentary provenance,paleogeographic patterns,and the tectonic ev...The Late Paleozoic-Early Mesozoic sedimentary system of the Luang Prabang Paleotethyan back-arc basin in northern Laos is important for investigating sedimentary provenance,paleogeographic patterns,and the tectonic evolution of the eastern Paleotethyan Ocean.This study presents systematic stratigraphy,petrology,geochemistry,and detrital zircon U-Pb-Hf isotopic analyses for the Late Carboniferous-Jurassic sedimentary strata on both sides of the Luang Prabang Basin.Based on distinct stratigraphic ages and provenance characteristics,the clastic rock samples can be divided into four groups.The Group 1 Late Carboniferous-Early Permian samples from the western part of the basin yield detrital zircon age-peaks of~348 and~1425 Ma,with correspondingεHf(t)values ranging from-2.0 to+15.5 and+1.5 to+14,respectively.The age spectrum of Group 2 Late Carboniferous-Early Permian samples from the eastern part of the basin shows major age-peaks of~287 and~1860 Ma,withεHf(t)values of-5.9--0.9 and-3.6-+4.2,respectively.Group 3 Late Permian-Triassic samples exhibit age-peaks of~242 and~1853 Ma,along withεHf(t)values of-0.7-+14.4 and-5.4--1.8,respectively.Group 4 Middle-Late Jurassic samples yield agepeaks of~237,~431,~813,~1833,and~2460 Ma,lacking Late Devonian(413-345 Ma)detrital zircons.All these data collectively suggest that the Group 1 sample primarily originated from the Sukhothai arc in western Indochina,Group 2 was from the Kontum and Truong Son in eastern Indochina,and Group 3 has a combined provenance of the Sukhothai,Kontum,and Truong Son.Regional comparisons suggest that the Jurassic provenance was mainly derived from South China,which was imported through the northern river system.Our data,combined with the regional angular unconformities between the Jurassic continental strata and pre-Jurassic marine strata,suggest that the Luang Prabang Basin transformed into a superimposed collisional retroforeland basin during the Jurassic,and the closure of the Luang Prabang BAB occurred before the Late Triassic.展开更多
The foramtion and evolution of collisional orogen is a prominent feature along convergent plate margins, and is generally a complex process. This article presents an integrated study of zircon genesis, U-Pb age and Lu...The foramtion and evolution of collisional orogen is a prominent feature along convergent plate margins, and is generally a complex process. This article presents an integrated study of zircon genesis, U-Pb age and Lu-Hf isotope composition as well as geological characteristics for the western Dabie orogen to constrain its multi-stage evolution history. The results suggest that the formation of oceanic crust in the Huwan area was constrained at ca. 400―430 Ma, which was slightly later than the collision of the northern Qinling with the North China Block. It formed in a marginal basin in the northern margin of the Yangtze Block. The peak metamorphism of eclogite in the Huwan area occurred at ca. 310 Ma, and the timing of the initial exhumation of oceanic eclogite was about 270 Ma. The high to ultrahigh pressure (HP-UHP) metamorphic rocks in the Xinxian and the Hong'an metamorphic zones have the same ages and natures as those of the HP-UHP metamorphic rocks in the other Dabie-Sulu terrains, and also have experienced multi-stage exhumation, and thus can be taken as a coherent part of the Dabie-Sulu orogen. Therefore, the Qinling-Dabie-Sulu orogen is a typical multi-stage continental collision orogen, with an amalgamation process extending more than 200 Ma.展开更多
基金Financial supports from the National Natural Science Foundation of China(Nos.41190073 and 41402165the Fundamental Research Funds for the Central Universities to SYSU are gratefully acknowledged
文摘The Changning-Menglian suture in SW Yunnan has been accepted as the Paleotethyan main ocean. However, it has been a matter of debate as to its southerly extension in NW Thailand(the Chiang Mai-Chiang Rai vs. Nan-Uttaradit zone). Our field investigation identified the high-iron basaltic rocks in the Chiang Dao Permian standard profile in NW Thailand. The high-iron rocks provide crucial records for understanding the controversy on the location of Paleotethyan main ocean in NW Thailand. The Early Permian high-iron samples show extremely high Fe Ot(20.96 wt.%–25.56 wt.%) and TiO2(6.07 wt.%–6.34 wt.%) and low SiO2(38.54 wt.%–43.46 wt.%) and Mg O(1.61 wt.%–2.40 wt.%) contents. Such characteristics are similar to those of the Fenner differentiation trend rarely observed in the natural system, distinct from those of the "normal" Bowen trend. Their chondrite- normalized REE and primitive mantle-normalized patterns are generally similar to those of typical OIB. The initial 87Sr/86 Sr ratios and εNd(t) values range from 0.704 677 to 0.705 103 and 3.16 to 3.48, respectively, falling near the field of typical OIB(oceanic-island basalt). These data synthetically suggest that the Chiang Dao high-iron rocks are the products of high-degree partial melting of peridotite with Fe-rich eclogitic blobs/streaks in response to a seamount setting. In comparison with the Permian tectonic setting in SW Yunnan and NW Thailand, it is inferred that the Paleotethyan Ocean was located between the Shan-Thai terrane of Sibumasu and Sukhothai arc along the Inthanon zone of the Chiang Mai-Chiang Rai rather than Nan-Uttaradit zones.
基金supported by the National Key Research and Development Program of China(No.2023YFF0803701)the National Natural Science Foundation of China(Nos.42330302 and 42472265)the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.SML2023SP239)。
文摘The Late Paleozoic-Early Mesozoic sedimentary system of the Luang Prabang Paleotethyan back-arc basin in northern Laos is important for investigating sedimentary provenance,paleogeographic patterns,and the tectonic evolution of the eastern Paleotethyan Ocean.This study presents systematic stratigraphy,petrology,geochemistry,and detrital zircon U-Pb-Hf isotopic analyses for the Late Carboniferous-Jurassic sedimentary strata on both sides of the Luang Prabang Basin.Based on distinct stratigraphic ages and provenance characteristics,the clastic rock samples can be divided into four groups.The Group 1 Late Carboniferous-Early Permian samples from the western part of the basin yield detrital zircon age-peaks of~348 and~1425 Ma,with correspondingεHf(t)values ranging from-2.0 to+15.5 and+1.5 to+14,respectively.The age spectrum of Group 2 Late Carboniferous-Early Permian samples from the eastern part of the basin shows major age-peaks of~287 and~1860 Ma,withεHf(t)values of-5.9--0.9 and-3.6-+4.2,respectively.Group 3 Late Permian-Triassic samples exhibit age-peaks of~242 and~1853 Ma,along withεHf(t)values of-0.7-+14.4 and-5.4--1.8,respectively.Group 4 Middle-Late Jurassic samples yield agepeaks of~237,~431,~813,~1833,and~2460 Ma,lacking Late Devonian(413-345 Ma)detrital zircons.All these data collectively suggest that the Group 1 sample primarily originated from the Sukhothai arc in western Indochina,Group 2 was from the Kontum and Truong Son in eastern Indochina,and Group 3 has a combined provenance of the Sukhothai,Kontum,and Truong Son.Regional comparisons suggest that the Jurassic provenance was mainly derived from South China,which was imported through the northern river system.Our data,combined with the regional angular unconformities between the Jurassic continental strata and pre-Jurassic marine strata,suggest that the Luang Prabang Basin transformed into a superimposed collisional retroforeland basin during the Jurassic,and the closure of the Luang Prabang BAB occurred before the Late Triassic.
基金Supported by the National Basic Research Program of China (Grant No. 2009CB825000)National Natural Science Foundation of China (Grant Nos. 40873043, 40821061, 90714010 and 40772042)+1 种基金Ministry of Education of China (Grant Nos. IRT0441, B07039 and NCET-06-0659)Foundation of the State Key Laboratory of Continental Dynamics, Northwest University
文摘The foramtion and evolution of collisional orogen is a prominent feature along convergent plate margins, and is generally a complex process. This article presents an integrated study of zircon genesis, U-Pb age and Lu-Hf isotope composition as well as geological characteristics for the western Dabie orogen to constrain its multi-stage evolution history. The results suggest that the formation of oceanic crust in the Huwan area was constrained at ca. 400―430 Ma, which was slightly later than the collision of the northern Qinling with the North China Block. It formed in a marginal basin in the northern margin of the Yangtze Block. The peak metamorphism of eclogite in the Huwan area occurred at ca. 310 Ma, and the timing of the initial exhumation of oceanic eclogite was about 270 Ma. The high to ultrahigh pressure (HP-UHP) metamorphic rocks in the Xinxian and the Hong'an metamorphic zones have the same ages and natures as those of the HP-UHP metamorphic rocks in the other Dabie-Sulu terrains, and also have experienced multi-stage exhumation, and thus can be taken as a coherent part of the Dabie-Sulu orogen. Therefore, the Qinling-Dabie-Sulu orogen is a typical multi-stage continental collision orogen, with an amalgamation process extending more than 200 Ma.