The Late Paleozoic-Early Mesozoic sedimentary system of the Luang Prabang Paleotethyan back-arc basin in northern Laos is important for investigating sedimentary provenance,paleogeographic patterns,and the tectonic ev...The Late Paleozoic-Early Mesozoic sedimentary system of the Luang Prabang Paleotethyan back-arc basin in northern Laos is important for investigating sedimentary provenance,paleogeographic patterns,and the tectonic evolution of the eastern Paleotethyan Ocean.This study presents systematic stratigraphy,petrology,geochemistry,and detrital zircon U-Pb-Hf isotopic analyses for the Late Carboniferous-Jurassic sedimentary strata on both sides of the Luang Prabang Basin.Based on distinct stratigraphic ages and provenance characteristics,the clastic rock samples can be divided into four groups.The Group 1 Late Carboniferous-Early Permian samples from the western part of the basin yield detrital zircon age-peaks of~348 and~1425 Ma,with correspondingεHf(t)values ranging from-2.0 to+15.5 and+1.5 to+14,respectively.The age spectrum of Group 2 Late Carboniferous-Early Permian samples from the eastern part of the basin shows major age-peaks of~287 and~1860 Ma,withεHf(t)values of-5.9--0.9 and-3.6-+4.2,respectively.Group 3 Late Permian-Triassic samples exhibit age-peaks of~242 and~1853 Ma,along withεHf(t)values of-0.7-+14.4 and-5.4--1.8,respectively.Group 4 Middle-Late Jurassic samples yield agepeaks of~237,~431,~813,~1833,and~2460 Ma,lacking Late Devonian(413-345 Ma)detrital zircons.All these data collectively suggest that the Group 1 sample primarily originated from the Sukhothai arc in western Indochina,Group 2 was from the Kontum and Truong Son in eastern Indochina,and Group 3 has a combined provenance of the Sukhothai,Kontum,and Truong Son.Regional comparisons suggest that the Jurassic provenance was mainly derived from South China,which was imported through the northern river system.Our data,combined with the regional angular unconformities between the Jurassic continental strata and pre-Jurassic marine strata,suggest that the Luang Prabang Basin transformed into a superimposed collisional retroforeland basin during the Jurassic,and the closure of the Luang Prabang BAB occurred before the Late Triassic.展开更多
Lacustrine turbidite of Chang-7 Member in the studied area consists of sihstone and fine sandstone with respect to grain size, which is feldspathic lithie sandstone, syrosem arkose and arkose with respect to mineral c...Lacustrine turbidite of Chang-7 Member in the studied area consists of sihstone and fine sandstone with respect to grain size, which is feldspathic lithie sandstone, syrosem arkose and arkose with respect to mineral constitution affected by provenance. There are such apparent signatures as lithology, sedimentary structure, sedimentary sequence and well logs, to recognize turbidite. During the paleogeographic evolution of Chang-7 Member, lake basin and deep lake are both at their maximum extent during Chang-73 stage, resulting in the deposition of Zhangjiatan shale with widespread extent and of turbidite with fragmental-like. Deep lake line is gradually moving toward lake center and turbidite sand bodies are gradually turning better with better lateral continuity, connectivity and more thickness, from stages of Chang-73, Chang-72 and Chang-7t, which can be favorable reservoir in deep-water.展开更多
The intense uplift of the Qinghai-Xizang Plateau givesrise to drastic changes of natural environment and distinctdifferentiation of the Plateau proper. This paper focuses on theevolution of subtropical environment at ...The intense uplift of the Qinghai-Xizang Plateau givesrise to drastic changes of natural environment and distinctdifferentiation of the Plateau proper. This paper focuses on theevolution of subtropical environment at low altitude to frigidenvironment at high altitude of the region since Pliocene and thechanges effected by cold-warm amplitude bf global change. Bycomparative study on the structure-type of the altitudinal belt, adistributional model diagram with close relevance to highlanduplift effect has been generalized. Based on regjonaldifferentiation of the Qinghai-Xizang Plateau, a number ofstriking geo-ecological phenomena such as moisture corridor, dryvalleys and high cold-arid core area are investigated anddiscussed.展开更多
The composition and geological evolution of pre-Cryogenian material in the Tibetan Plateau and its surrounding areas have played an important role in studying the formation and evolution of early supercontinents on Ea...The composition and geological evolution of pre-Cryogenian material in the Tibetan Plateau and its surrounding areas have played an important role in studying the formation and evolution of early supercontinents on Earth.This paper systematically summarizes the characteristics of pre-Cryogenian sedimentation,paleontology,magmatism,and metamorphism in the Tibetan Plateau and its surrounding areas.Based on existing data,the records of pre-Cryogenian sedimentation and paleontology are mainly concentrated in the Meso-Neoproterozoic,with relatively few records from the Paleoproterozoic or earlier.The oldest geological record is the Hadean detrital zircons in the metamorphosed sedimentary rocks of the Himalaya and Qamdo areas(ca.4.0 Ga).The Tibetan Plateau and surrounding areas preserve records related to the formation and evolution of the Kenor supercraton,and the Columbia,Rodinia,and Gondwana supercontinents.Pre-Cryogenian basements can be divided into three types:Tarim-,Yangtze-,and Lhasa-type.The Tarim-type basement has a paleogeographic affinity with the northern margins of the Australian and Indian continents and lacks detrital zircon age peaks and magmatic-metamorphic records related to the Rodinia assembly(ca.1.3-0.9 Ga).The Yangtze-type basement records volcanic activity related to global cooling in the latest pre-Cryogenian period and contains Meso-Neoproterozoic stromatolite and micropaleoflora fossils,as well as magmaticmetamorphic records related to Rodinia assembly(ca.1.1-1.0 Ga).The Lhasa-type basement is characterized by Neoproterozoic rift-related sediment records(ca.900 Ma)and high-pressure metamorphic events(ca.650 Ma),with a prominent peak of detrital zircon ages of ca.1.2-1.1 Ga.It is likely to have a paleogeographic affinity with the African continent.展开更多
基金supported by the National Key Research and Development Program of China(No.2023YFF0803701)the National Natural Science Foundation of China(Nos.42330302 and 42472265)the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.SML2023SP239)。
文摘The Late Paleozoic-Early Mesozoic sedimentary system of the Luang Prabang Paleotethyan back-arc basin in northern Laos is important for investigating sedimentary provenance,paleogeographic patterns,and the tectonic evolution of the eastern Paleotethyan Ocean.This study presents systematic stratigraphy,petrology,geochemistry,and detrital zircon U-Pb-Hf isotopic analyses for the Late Carboniferous-Jurassic sedimentary strata on both sides of the Luang Prabang Basin.Based on distinct stratigraphic ages and provenance characteristics,the clastic rock samples can be divided into four groups.The Group 1 Late Carboniferous-Early Permian samples from the western part of the basin yield detrital zircon age-peaks of~348 and~1425 Ma,with correspondingεHf(t)values ranging from-2.0 to+15.5 and+1.5 to+14,respectively.The age spectrum of Group 2 Late Carboniferous-Early Permian samples from the eastern part of the basin shows major age-peaks of~287 and~1860 Ma,withεHf(t)values of-5.9--0.9 and-3.6-+4.2,respectively.Group 3 Late Permian-Triassic samples exhibit age-peaks of~242 and~1853 Ma,along withεHf(t)values of-0.7-+14.4 and-5.4--1.8,respectively.Group 4 Middle-Late Jurassic samples yield agepeaks of~237,~431,~813,~1833,and~2460 Ma,lacking Late Devonian(413-345 Ma)detrital zircons.All these data collectively suggest that the Group 1 sample primarily originated from the Sukhothai arc in western Indochina,Group 2 was from the Kontum and Truong Son in eastern Indochina,and Group 3 has a combined provenance of the Sukhothai,Kontum,and Truong Son.Regional comparisons suggest that the Jurassic provenance was mainly derived from South China,which was imported through the northern river system.Our data,combined with the regional angular unconformities between the Jurassic continental strata and pre-Jurassic marine strata,suggest that the Luang Prabang Basin transformed into a superimposed collisional retroforeland basin during the Jurassic,and the closure of the Luang Prabang BAB occurred before the Late Triassic.
文摘Lacustrine turbidite of Chang-7 Member in the studied area consists of sihstone and fine sandstone with respect to grain size, which is feldspathic lithie sandstone, syrosem arkose and arkose with respect to mineral constitution affected by provenance. There are such apparent signatures as lithology, sedimentary structure, sedimentary sequence and well logs, to recognize turbidite. During the paleogeographic evolution of Chang-7 Member, lake basin and deep lake are both at their maximum extent during Chang-73 stage, resulting in the deposition of Zhangjiatan shale with widespread extent and of turbidite with fragmental-like. Deep lake line is gradually moving toward lake center and turbidite sand bodies are gradually turning better with better lateral continuity, connectivity and more thickness, from stages of Chang-73, Chang-72 and Chang-7t, which can be favorable reservoir in deep-water.
文摘The intense uplift of the Qinghai-Xizang Plateau givesrise to drastic changes of natural environment and distinctdifferentiation of the Plateau proper. This paper focuses on theevolution of subtropical environment at low altitude to frigidenvironment at high altitude of the region since Pliocene and thechanges effected by cold-warm amplitude bf global change. Bycomparative study on the structure-type of the altitudinal belt, adistributional model diagram with close relevance to highlanduplift effect has been generalized. Based on regjonaldifferentiation of the Qinghai-Xizang Plateau, a number ofstriking geo-ecological phenomena such as moisture corridor, dryvalleys and high cold-arid core area are investigated anddiscussed.
基金supported by the Chinese Geological Survey Project(Grant No.DD20221630)the National Key Research and Development Project of China(Grant No.2021YFC2901901)+3 种基金the Second Tibetan Plateau Scientific Expedition and Research(STEP)(Grant No.2019QZKK0703)the National Natural Science Foundation of China(Grant Nos.42072268 and 41872240)the Chinese Academy of Geological Sciences(Grant No.J2202)Australian Research(Grant No.FL160100168)。
文摘The composition and geological evolution of pre-Cryogenian material in the Tibetan Plateau and its surrounding areas have played an important role in studying the formation and evolution of early supercontinents on Earth.This paper systematically summarizes the characteristics of pre-Cryogenian sedimentation,paleontology,magmatism,and metamorphism in the Tibetan Plateau and its surrounding areas.Based on existing data,the records of pre-Cryogenian sedimentation and paleontology are mainly concentrated in the Meso-Neoproterozoic,with relatively few records from the Paleoproterozoic or earlier.The oldest geological record is the Hadean detrital zircons in the metamorphosed sedimentary rocks of the Himalaya and Qamdo areas(ca.4.0 Ga).The Tibetan Plateau and surrounding areas preserve records related to the formation and evolution of the Kenor supercraton,and the Columbia,Rodinia,and Gondwana supercontinents.Pre-Cryogenian basements can be divided into three types:Tarim-,Yangtze-,and Lhasa-type.The Tarim-type basement has a paleogeographic affinity with the northern margins of the Australian and Indian continents and lacks detrital zircon age peaks and magmatic-metamorphic records related to the Rodinia assembly(ca.1.3-0.9 Ga).The Yangtze-type basement records volcanic activity related to global cooling in the latest pre-Cryogenian period and contains Meso-Neoproterozoic stromatolite and micropaleoflora fossils,as well as magmaticmetamorphic records related to Rodinia assembly(ca.1.1-1.0 Ga).The Lhasa-type basement is characterized by Neoproterozoic rift-related sediment records(ca.900 Ma)and high-pressure metamorphic events(ca.650 Ma),with a prominent peak of detrital zircon ages of ca.1.2-1.1 Ga.It is likely to have a paleogeographic affinity with the African continent.