期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Boiti-Leon-Pempinelli系统的半折迭局域聚合结构 被引量:1
1
作者 马正义 《云南师范大学学报(自然科学版)》 2005年第2期33-36,64,共5页
利用Painlevé B cklund变换和多线性变量分离途经,获得了(2+1) 维 Boiti Leon Pempinelli系统的变量分离解,基于该导出解,构造出了两类具有半折迭局域聚合结构的孤波解。
关键词 (2+1)-一维Boiti-Leon-Pempinelli系统 painlev6-1~cklund变换 分离变量法 半折迭局域 聚合结构 孤波解
在线阅读 下载PDF
Invariance of Painlev property for some reduced (1+1)-dimensional equations 被引量:1
2
作者 智红燕 常辉 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期146-151,共6页
We study the Painlevé property of the (1+1)-dimensional equations arising from the symmetry reduction for the (2+1)- dimensional ones. Firstly, we derive the similarity reduction of the (2+1)-dimensional... We study the Painlevé property of the (1+1)-dimensional equations arising from the symmetry reduction for the (2+1)- dimensional ones. Firstly, we derive the similarity reduction of the (2+1)-dimensional potential Calogero-Bogoyavlenskii- Schiff (CBS) equation and Konopelchenko-Dubrovsky (KD) equations with the optimal system of the admitted one-dimensional subalgebras. Secondly, by analyzing the reduced CBS, KD, and Burgers equations with Painlevé test, re-spectively, we find both the Painlevé integrability, and the number and location of resonance points are invariant, if the similarity variables include all of the independent variables. 展开更多
关键词 similarity reduction painlev6 analysis resonance point (1 1)-dimensional reduced equation
原文传递
KdV6方程的多线性分离变量解
3
作者 张隽 谭喜玉 《浙江工业大学学报》 CAS 2012年第6期689-691,共3页
KdV6方程是一个具有Painlevé性质的新的可积系统,拥有无穷多个非全局对称,具有双哈密顿结构.主要利用多线性分离变量法研究(1+1)维的KdV6方程.该方法的思路是先利用标准的Painlevé截断展开寻找变换,将原方程化为多线性形式,... KdV6方程是一个具有Painlevé性质的新的可积系统,拥有无穷多个非全局对称,具有双哈密顿结构.主要利用多线性分离变量法研究(1+1)维的KdV6方程.该方法的思路是先利用标准的Painlevé截断展开寻找变换,将原方程化为多线性形式,再利用变量分离求得方程的特殊解.利用这种方法得到了(1+1)维KdV6方程在一定条件下包含一个任意函数的解.最后利用Maple软件,做出了两个特解的图形. 展开更多
关键词 KdV6方程 Painlevé截断 多线性分离变量法
在线阅读 下载PDF
标度变换与变系数非线性发展方程的精确解
4
作者 斯仁道尔吉 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期569-573,共5页
将Cariello和Tabor提出的求解不可积非线性发展方程精确解的方法推广到变系数方程的情形,并通过求解奇异流形函数的约束方程组和由标度变换引出的相似约化方程给出了变系数Burgers方程,变系数KdV-Burgers方程,变系数Newell-Whitehead方... 将Cariello和Tabor提出的求解不可积非线性发展方程精确解的方法推广到变系数方程的情形,并通过求解奇异流形函数的约束方程组和由标度变换引出的相似约化方程给出了变系数Burgers方程,变系数KdV-Burgers方程,变系数Newell-Whitehead方程的精确解. 展开更多
关键词 PAINLEVÉ分析 变系数非线性方程 标度变换
原文传递
2+1维Broer-Kaup方程推广的Painlevé非标准截断展开和精确解 被引量:5
5
作者 冯国鑫 王卿 钱贤民 《绍兴文理学院学报(自然科学版)》 2003年第10期16-20,共5页
利用基于Painlevé奇性分析方法的Pickering的非标准截断展开方法,并借助于Maple软件,得到了一个2+l维Broer-Kaup方程的一些孤子解.
关键词 BROER-KAUP方程 Painlevé奇性分析 Pickering的非标准截断展开 Maple7.0
在线阅读 下载PDF
Painlevé-Kuratowski Convergences of the Solution Sets for Perturbed Vector Equilibrium Problems without Monotonicity 被引量:3
6
作者 Zai-yun PENG Xin-min YANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2014年第4期845-858,共14页
In this paper, we obtain some stability results for perturbed vector equilibrium problems. Under new assumptions, which are weaker than the assumption of C-strict monotonicity, we provide sufficient conditions for the... In this paper, we obtain some stability results for perturbed vector equilibrium problems. Under new assumptions, which are weaker than the assumption of C-strict monotonicity, we provide sufficient conditions for the Painlev^-Kuratowski Convergence of the weak efficient solution sets and efficient solution sets for the perturbed vector equilibrium problems with a sequence of mappings converging in real linear metric spaces. These results extend and improve some known results in the literature. 展开更多
关键词 stability painlev6-Kuratowski convergence efficient solution perturbed vector equilibrium prob-lem SCALARIZATION
原文传递
一类的耦合Gross-Pitaevskii方程组可积条件下的孤子解
7
作者 王英 《林区教学》 2013年第8期75-77,共3页
通过对耦合Gross-Pitaevskii方程组可积性的研究,得到了该方程组通过Painleve分析得到了其可积性条件,进一步得到了耦合GP方程组在可积条件下的孤子解。
关键词 耦合Gross-Pitaevskii方程组 标准的耦合Schrodinger方程 BOSE-EINSTEIN凝聚 painlev6分析 孤子解
在线阅读 下载PDF
Global Asymptotics of Orthogonal Polynomials Associated with a Generalized Freud Weight
8
作者 Zhi-Tao WEN Roderick WONG Shuai-Xia XU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2018年第3期553-596,共44页
In this paper, the authors consider the asymptotic behavior of the monic polynomials orthogonal with respect to the weight function w(x) = /x/2αe-(x4+tx2), x ∈R, where α is a constant larger than - 1/2 and t... In this paper, the authors consider the asymptotic behavior of the monic polynomials orthogonal with respect to the weight function w(x) = /x/2αe-(x4+tx2), x ∈R, where α is a constant larger than - 1/2 and t is any real number. They consider this problem in three separate cases: (i) c 〉 -2, (ii) c = -2, and (iii) c 〈 -2, where c := tN-1/2 is a constant, N = n + a and n is the degree of the polynomial. In the first two cases, the support of the associated equilibrium measure μ is a single interval, whereas in the third case the support of μt consists of two intervals. In each case, globally uniform asymptotic expansions are obtained in several regions. These regions together cover the whole complex plane. The approach is based on a modified version of the steepest descent method for Riemann-Hilbert problems introduced by Deift and Zhou (1993). 展开更多
关键词 Orthogonal polynomials Globally uniform asymptotics Riemann-Hilbertproblems The second painlev6 transcendent Theta function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部