This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact so...This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants.展开更多
A new generalized inverse function-valued Padé approximation (GIFPA) was defined. Existence condition of GIFPA was given and its uniqueness theorem was proved. All possible degeneracy cases of GIFPA were discusse...A new generalized inverse function-valued Padé approximation (GIFPA) was defined. Existence condition of GIFPA was given and its uniqueness theorem was proved. All possible degeneracy cases of GIFPA were discussed and constructed. An example was given to illustrate its application.展开更多
The diagonal Padé approximants for exp ( x ), tan x and tanh x are obtained in a simple manner by using the property of Legendre polynomials that on P r1 (x) is orthogonal to every polynomial o...The diagonal Padé approximants for exp ( x ), tan x and tanh x are obtained in a simple manner by using the property of Legendre polynomials that on P r1 (x) is orthogonal to every polynomial of lower degree. Gauss's quadrature formula is used to find the denominators of some functions.展开更多
An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator...An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.展开更多
The nomaal moveout correction is important to long-offset observations, especially deep layers. For isotropic media, the conventional two-term approximation of the normal moveout function assumes a small offset-to-dep...The nomaal moveout correction is important to long-offset observations, especially deep layers. For isotropic media, the conventional two-term approximation of the normal moveout function assumes a small offset-to-depth ratio and thus fails at large offset-to-depth ratios. We approximate the long-offset moveout using the Pade approximation. This method is superior to typical methods and flattens the seismic gathers over a wide range of offsets in multilayered media. For a four-layer model, traditional methods show traveltime errors of about 5 ms for offset-to-depth ratio of 2 and greater than 10 ms for offset-to-depth ratio of 3; in contrast, the maximum traveltime error for the [3, 3]-order Pade approximation is no more than 5 ms at offset-to-depth ratio of 3. For the Cooper Basin model, the maximum oft'set-to-depth ratio for the [3, 3]-order Pade approximation is typically double of those in typical methods. The [7, 7]-order Pade approximation performs better than the [3.3]-order Pade armroximation.展开更多
Quantized vortices are important topological excitations in Bose–Einstein condensates. The Gross–Pitaevskii equation is a widely accepted theoretical tool. High accuracy quantized-vortex solutions are desirable in m...Quantized vortices are important topological excitations in Bose–Einstein condensates. The Gross–Pitaevskii equation is a widely accepted theoretical tool. High accuracy quantized-vortex solutions are desirable in many numerical and analytical studies. We successfully derive the Padéapproximate solutions for quantized vortices with winding numbers ω = 1, 2, 3, 4, 5, 6 in the context of the Gross–Pitaevskii equation for a uniform condensate. Compared with the numerical solutions, we find that(1) they approximate the entire solutions quite well from the core to infinity;(2) higher-order Padé approximate solutions have higher accuracy;(3) Padé approximate solutions for larger winding numbers have lower accuracy. The healing lengths of the quantized vortices are calculated and found to increase almost linearly with the winding number. Based on experiments performed with 87Rb cold atoms, the healing lengths of quantized vortices and the number of particles within the healing lengths are calculated, and they may be checked by experiment. Our results show that the Gross–Pitaevskii equation is capable of describing the structure of quantized vortices and physics at length scales smaller than the healing length.展开更多
The magnetic interface forward and inversion method is realized using the Taylor series expansion to linearize the Fourier transform of the exponential function. With a large expansion step and unbounded neighborhood,...The magnetic interface forward and inversion method is realized using the Taylor series expansion to linearize the Fourier transform of the exponential function. With a large expansion step and unbounded neighborhood, the Taylor series is not convergent, and therefore, this paper presents the magnetic interface forward and inversion method based on Pade approximation instead of the Taylor series expansion. Compared with the Taylor series, Pade's expansion's convergence is more stable and its approximation more accurate. Model tests show the validity of the magnetic forward modeling and inversion of Pade approximation proposed in the paper, and when this inversion method is applied to the measured data of the Matagami area in Canada, a stable and reasonable distribution of underground interface is obtained.展开更多
In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to...In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to the concentration level of singular Trudinger-Moser functional on the unit ball.展开更多
Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous ...Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous quantitative analyses often simplified the chorus dispersion relation by using the cold plasma assumption.However,the applicability of the cold plasma assumption is doubtful,especially during geomagnetic disturbances.We here present a systematic statistical analysis on the validity of the cold plasma dispersion relation of chorus waves based on observations from the Van Allen Probes over the period from 2012 to 2018.The statistical results show that the observed magnetic field intensities deviate substantially from those calculated from the cold plasma dispersion relation and that they become more pronounced with an increase in geomagnetic activity or a decrease in background plasma density.The region with large deviations is mainly concentrated in the nightside and expands in both the radial and azimuthal directions as the geomagnetic activity increases or the background plasma density decreases.In addition,the bounce-averaged electron scattering rates are computed by using the observed and cold plasma dispersion relation of chorus waves.Compared with usage of the cold plasma dispersion relation,usage of the observed dispersion relation considerably lowers the minimum resonant energy of electrons and lowers the scattering rates of electrons above tens of kiloelectronvolts but enhances those below.Furthermore,these differences are more pronounced with the enhancement of geomagnetic activity or the decrease in background plasma density.展开更多
Suppose thatλ_(1),λ_(2),λ_(3),λ_(4),λ_(5)are nonzero real numbers,not all of the same sign,andλ_(1)/λ_(2)is irrational and algebraic.Let V be a well-spaced sequence,δ>0.In this paper,it is proved that,for ...Suppose thatλ_(1),λ_(2),λ_(3),λ_(4),λ_(5)are nonzero real numbers,not all of the same sign,andλ_(1)/λ_(2)is irrational and algebraic.Let V be a well-spaced sequence,δ>0.In this paper,it is proved that,for anyε>0,the number of v∈V with v≤N such that the following inequality|λ_(1)p_(1)~2+λ_(2)p_(2)~2+λ_(3)p_(3)~4+λ_(4)p_(4)~4+λ_5p_5~4-v|<v^(-δ)has no solution in prime variables p_(1),p_(2),p_(3),p_(4),p_(5)does not exceed O(N^(29/32+2δ+ε)).展开更多
This paper studies the Smoluchowski–Kramers approximation for a discrete-time dynamical system modeled as the motion of a particle in a force field.We show that the approximation holds for the drift-implicit Euler–M...This paper studies the Smoluchowski–Kramers approximation for a discrete-time dynamical system modeled as the motion of a particle in a force field.We show that the approximation holds for the drift-implicit Euler–Maruyama discretization and derive its convergence rate.In particular,the solution of the discretized system converges to the solution of the first-order limit equation in the mean-square sense,and this convergence is independent of the order in which the mass parameterμand the step size h tend to zero.展开更多
With the growing demand for compute-intensive applications such as artificial intelligence(AI)and video processing,traditional reconfigurable array processors fail to meet the requirements of high-performance computin...With the growing demand for compute-intensive applications such as artificial intelligence(AI)and video processing,traditional reconfigurable array processors fail to meet the requirements of high-performance computing and related domains,primarily due to their high power consumption and low energy efficiency.To address this limitation,this paper proposes an accuracy-adaptive approxi-mate reconfigurable array architecture featuring preset dual thresholds and support for four computa-tional accuracy levels,enabling flexible adaptation to diverse application needs.The architecture in-tegrates a self-adaptive mechanism that dynamically adjusts computational precision based on real-time error threshold feedback.To evaluate the proposed architecture,the you only look once version 5(YOLOv5)deep neural network algorithm is parallelized and deployed on the approximate recon-figurable array.Experimental results demonstrate that the architecture achieves an 18.93%reduc-tion in power consumption compared with conventional reconfigurable structures operating in full-pre-cision mode.Additionally,the design exhibits superior energy efficiency and reduced computational resource utilization,thereby significantly enhancing the overall performance and applicability of reconfigurable array processors in power-sensitive scenarios.展开更多
In the present paper,we obtain the converse results of approximation of a newly introduced genuine Bernstein-Durrmeyer operators in movable interval.We also get the moments properties of an auxiliary operator which ha...In the present paper,we obtain the converse results of approximation of a newly introduced genuine Bernstein-Durrmeyer operators in movable interval.We also get the moments properties of an auxiliary operator which has its own independent values.The moments of the auxiliary operators play important roles in establishing the main result(Theorem 4).展开更多
Determining the minimal distance between the target state and the convex combination of given states is a fundamental problem in quantum resource theory,offering critical guidance for experimental implementations.In t...Determining the minimal distance between the target state and the convex combination of given states is a fundamental problem in quantum resource theory,offering critical guidance for experimental implementations.In this paper,we embark on an in-depth exploration of the use of a quantum state prepared by the convex combination of given qubit states to optimally approximate the l_(1)-norm of coherence of the target quantum state,striving to make the prepared state and the target state as similar as possible.Here,we present the analytical solution for the optimal distance for any N given quantum states.We find that the optimal approximation problem for any N>4 quantum states can be transformed into an optimal approximation problem for no more than four quantum states,which not only significantly streamlines the problem but also proves advantageous for laboratories in terms of material conservation.Ultimately,a one-to-one comparison between the analytical and numerical solutions verifies the effectiveness of our approach.展开更多
Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degra...Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degradation information to improve the prediction accuracy of degradation value or health indicator for the next epoch.However,they ignore the cumulative prediction error caused by iterations before reaching the failure point.展开更多
We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of ...We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and,unlike the state of the art,requires neither weakcoupling Lamb-Dicke approximation nor perturbation treatment.With the application of gradient-based optimal control,it enables finding amplitude-and phase-modulated laser control protocols that work without the Lamb-Dicke approximation,promising gate speeds on the order of microseconds comparable to the characteristic trap frequencies.Also,robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections.Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation,and thus can find applications in near-future experiments.展开更多
Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be a...Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be applied to estimating surplus eigenvalues of the Fredholm integral equation of the second kind when its partial eigenvalues have been known, and at the same time, it can be applied to solving the approximating solution of the given equation.展开更多
The polynomials related with cubic Hermite-Padé approximation to the exponential function are investigated which have degrees at most n, m, s respectively. A connection is given between the coefficients of each o...The polynomials related with cubic Hermite-Padé approximation to the exponential function are investigated which have degrees at most n, m, s respectively. A connection is given between the coefficients of each of the polynomials and certain hypergeometric functions, which leads to a simple expression for a polynomial in a special case. Contour integral representations of the polynomials are given. By using of the saddle point method the exact asymptotics of the polynomials are derived as n, m, s tend to infinity through certain ray sequence. Some further uniform asymptotic aspects of the polynomials are also discussed.展开更多
文摘This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants.
文摘A new generalized inverse function-valued Padé approximation (GIFPA) was defined. Existence condition of GIFPA was given and its uniqueness theorem was proved. All possible degeneracy cases of GIFPA were discussed and constructed. An example was given to illustrate its application.
文摘The diagonal Padé approximants for exp ( x ), tan x and tanh x are obtained in a simple manner by using the property of Legendre polynomials that on P r1 (x) is orthogonal to every polynomial of lower degree. Gauss's quadrature formula is used to find the denominators of some functions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172093 and 11372102)the Hunan Provincial Innovation Foundation for Postgraduate,China(Grant No.CX2012B159)
文摘An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.
基金supported by the National Natural Science Foundation of China(Nos.41130418 and 41374061)the National Major Project of China(No.2011ZX05008-006)and the Youth Innovation Promotion Association CAS(No.2012054)
文摘The nomaal moveout correction is important to long-offset observations, especially deep layers. For isotropic media, the conventional two-term approximation of the normal moveout function assumes a small offset-to-depth ratio and thus fails at large offset-to-depth ratios. We approximate the long-offset moveout using the Pade approximation. This method is superior to typical methods and flattens the seismic gathers over a wide range of offsets in multilayered media. For a four-layer model, traditional methods show traveltime errors of about 5 ms for offset-to-depth ratio of 2 and greater than 10 ms for offset-to-depth ratio of 3; in contrast, the maximum traveltime error for the [3, 3]-order Pade approximation is no more than 5 ms at offset-to-depth ratio of 3. For the Cooper Basin model, the maximum oft'set-to-depth ratio for the [3, 3]-order Pade approximation is typically double of those in typical methods. The [7, 7]-order Pade approximation performs better than the [3.3]-order Pade armroximation.
基金Undergraduate Innovation and Entrepreneurship Program Grant No.S201910579797National Natural Science Foundation of China with Grant No.12005088,11847001,11747017+1 种基金Guangdong Basic and Applied Basic Research Foundation with Grant No.2021A1515010246supported by the Lingnan Normal University Project with Grant No.YL20200203,ZL1930。
文摘Quantized vortices are important topological excitations in Bose–Einstein condensates. The Gross–Pitaevskii equation is a widely accepted theoretical tool. High accuracy quantized-vortex solutions are desirable in many numerical and analytical studies. We successfully derive the Padéapproximate solutions for quantized vortices with winding numbers ω = 1, 2, 3, 4, 5, 6 in the context of the Gross–Pitaevskii equation for a uniform condensate. Compared with the numerical solutions, we find that(1) they approximate the entire solutions quite well from the core to infinity;(2) higher-order Padé approximate solutions have higher accuracy;(3) Padé approximate solutions for larger winding numbers have lower accuracy. The healing lengths of the quantized vortices are calculated and found to increase almost linearly with the winding number. Based on experiments performed with 87Rb cold atoms, the healing lengths of quantized vortices and the number of particles within the healing lengths are calculated, and they may be checked by experiment. Our results show that the Gross–Pitaevskii equation is capable of describing the structure of quantized vortices and physics at length scales smaller than the healing length.
基金supported by Sino Probe-09-01-Integrated geophysical data processing and integrated system for moving platform(No.201311192)Graduate innovation fund of Jilin University(No.2015025)
文摘The magnetic interface forward and inversion method is realized using the Taylor series expansion to linearize the Fourier transform of the exponential function. With a large expansion step and unbounded neighborhood, the Taylor series is not convergent, and therefore, this paper presents the magnetic interface forward and inversion method based on Pade approximation instead of the Taylor series expansion. Compared with the Taylor series, Pade's expansion's convergence is more stable and its approximation more accurate. Model tests show the validity of the magnetic forward modeling and inversion of Pade approximation proposed in the paper, and when this inversion method is applied to the measured data of the Matagami area in Canada, a stable and reasonable distribution of underground interface is obtained.
文摘In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to the concentration level of singular Trudinger-Moser functional on the unit ball.
基金supported by the National Natural Science Foundation of China (NSFC) through Grant Number 42074193
文摘Theoretical analysis has demonstrated that the dispersion relation of chorus waves plays an essential role in the resonant interaction and energy transformation between the waves and magnetospheric electrons.Previous quantitative analyses often simplified the chorus dispersion relation by using the cold plasma assumption.However,the applicability of the cold plasma assumption is doubtful,especially during geomagnetic disturbances.We here present a systematic statistical analysis on the validity of the cold plasma dispersion relation of chorus waves based on observations from the Van Allen Probes over the period from 2012 to 2018.The statistical results show that the observed magnetic field intensities deviate substantially from those calculated from the cold plasma dispersion relation and that they become more pronounced with an increase in geomagnetic activity or a decrease in background plasma density.The region with large deviations is mainly concentrated in the nightside and expands in both the radial and azimuthal directions as the geomagnetic activity increases or the background plasma density decreases.In addition,the bounce-averaged electron scattering rates are computed by using the observed and cold plasma dispersion relation of chorus waves.Compared with usage of the cold plasma dispersion relation,usage of the observed dispersion relation considerably lowers the minimum resonant energy of electrons and lowers the scattering rates of electrons above tens of kiloelectronvolts but enhances those below.Furthermore,these differences are more pronounced with the enhancement of geomagnetic activity or the decrease in background plasma density.
基金Supported by NSFC(Nos.12301006,12471009,12071238,11901566,12001047,11971476)Beijing Natural Science Foundation(No.1242003)。
文摘Suppose thatλ_(1),λ_(2),λ_(3),λ_(4),λ_(5)are nonzero real numbers,not all of the same sign,andλ_(1)/λ_(2)is irrational and algebraic.Let V be a well-spaced sequence,δ>0.In this paper,it is proved that,for anyε>0,the number of v∈V with v≤N such that the following inequality|λ_(1)p_(1)~2+λ_(2)p_(2)~2+λ_(3)p_(3)~4+λ_(4)p_(4)~4+λ_5p_5~4-v|<v^(-δ)has no solution in prime variables p_(1),p_(2),p_(3),p_(4),p_(5)does not exceed O(N^(29/32+2δ+ε)).
基金supported by the PhD Research Startup Foundation of Hubei University of Economics(Grand No.XJ23BS42).
文摘This paper studies the Smoluchowski–Kramers approximation for a discrete-time dynamical system modeled as the motion of a particle in a force field.We show that the approximation holds for the drift-implicit Euler–Maruyama discretization and derive its convergence rate.In particular,the solution of the discretized system converges to the solution of the first-order limit equation in the mean-square sense,and this convergence is independent of the order in which the mass parameterμand the step size h tend to zero.
基金Supported by the National Science and Technology Major Project(No.2022ZD0119001)the National Natural Science Foundation of China(No.61834005,61802304)the Key R&D Program Projects in Shaanxi Province(No.2024GX-YBXM-100).
文摘With the growing demand for compute-intensive applications such as artificial intelligence(AI)and video processing,traditional reconfigurable array processors fail to meet the requirements of high-performance computing and related domains,primarily due to their high power consumption and low energy efficiency.To address this limitation,this paper proposes an accuracy-adaptive approxi-mate reconfigurable array architecture featuring preset dual thresholds and support for four computa-tional accuracy levels,enabling flexible adaptation to diverse application needs.The architecture in-tegrates a self-adaptive mechanism that dynamically adjusts computational precision based on real-time error threshold feedback.To evaluate the proposed architecture,the you only look once version 5(YOLOv5)deep neural network algorithm is parallelized and deployed on the approximate recon-figurable array.Experimental results demonstrate that the architecture achieves an 18.93%reduc-tion in power consumption compared with conventional reconfigurable structures operating in full-pre-cision mode.Additionally,the design exhibits superior energy efficiency and reduced computational resource utilization,thereby significantly enhancing the overall performance and applicability of reconfigurable array processors in power-sensitive scenarios.
文摘In the present paper,we obtain the converse results of approximation of a newly introduced genuine Bernstein-Durrmeyer operators in movable interval.We also get the moments properties of an auxiliary operator which has its own independent values.The moments of the auxiliary operators play important roles in establishing the main result(Theorem 4).
基金supported by the Fundamental Research Projects of Shanxi Province(Grant No.202203021222225)the National Natural Science Foundation of China(Grant Nos.12175029,12011530014,and 11775040)the Key Research and Development Project of Liaoning Province(Grant No.2020JH2/10500003).
文摘Determining the minimal distance between the target state and the convex combination of given states is a fundamental problem in quantum resource theory,offering critical guidance for experimental implementations.In this paper,we embark on an in-depth exploration of the use of a quantum state prepared by the convex combination of given qubit states to optimally approximate the l_(1)-norm of coherence of the target quantum state,striving to make the prepared state and the target state as similar as possible.Here,we present the analytical solution for the optimal distance for any N given quantum states.We find that the optimal approximation problem for any N>4 quantum states can be transformed into an optimal approximation problem for no more than four quantum states,which not only significantly streamlines the problem but also proves advantageous for laboratories in terms of material conservation.Ultimately,a one-to-one comparison between the analytical and numerical solutions verifies the effectiveness of our approach.
基金supported in part by the National Natural Science Foundation of China(U2034209)the Postdoctoral Science Foundation of Chongqing(cstc2021jcyj-bsh X0047)+1 种基金the Fundamental Research Funds for the Central Universities(2022CDJJMRH-008)the National Natural Science Foundation of China(62203075)
文摘Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degradation information to improve the prediction accuracy of degradation value or health indicator for the next epoch.However,they ignore the cumulative prediction error caused by iterations before reaching the failure point.
基金supported by the National Natural Science Foundation of China(Grant Nos.12441502,12122506,12204230,and 12404554)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2024ZD0300404)+6 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2021B1515020070)Shenzhen Science and Technology Program(Grant No.RCYX20200714114522109)China Postdoctoral Science Foundation(CPSF)(2024M762114)Postdoctoral Fellowship Program of CPSF(GZC20231727)supported by the National Natural Science Foundation of China(Grant Nos.92165206 and 11974330)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301603)the Fundamental Research Funds for the Central Universities。
文摘We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and,unlike the state of the art,requires neither weakcoupling Lamb-Dicke approximation nor perturbation treatment.With the application of gradient-based optimal control,it enables finding amplitude-and phase-modulated laser control protocols that work without the Lamb-Dicke approximation,promising gate speeds on the order of microseconds comparable to the characteristic trap frequencies.Also,robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections.Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation,and thus can find applications in near-future experiments.
基金Project supported by the National Natural Science Foundation of China(Grant No.10271074)
文摘Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be applied to estimating surplus eigenvalues of the Fredholm integral equation of the second kind when its partial eigenvalues have been known, and at the same time, it can be applied to solving the approximating solution of the given equation.
文摘The polynomials related with cubic Hermite-Padé approximation to the exponential function are investigated which have degrees at most n, m, s respectively. A connection is given between the coefficients of each of the polynomials and certain hypergeometric functions, which leads to a simple expression for a polynomial in a special case. Contour integral representations of the polynomials are given. By using of the saddle point method the exact asymptotics of the polynomials are derived as n, m, s tend to infinity through certain ray sequence. Some further uniform asymptotic aspects of the polynomials are also discussed.