期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Fermat and Pythagoras Divisors for a New Explicit Proof of Fermat’s Theorem:a4 + b4 = c4. Part I
1
作者 Prosper Kouadio Kimou François Emmanuel Tanoé Kouassi Vincent Kouakou 《Advances in Pure Mathematics》 2024年第4期303-319,共17页
In this paper we prove in a new way, the well known result, that Fermat’s equation a<sup>4</sup> + b<sup>4</sup> = c<sup>4</sup>, is not solvable in ℕ , when abc≠0 . To show this ... In this paper we prove in a new way, the well known result, that Fermat’s equation a<sup>4</sup> + b<sup>4</sup> = c<sup>4</sup>, is not solvable in ℕ , when abc≠0 . To show this result, it suffices to prove that: ( F 0 ): a 1 4 + ( 2 s b 1 ) 4 = c 1 4 , is not solvable in ℕ , (where a 1 , b 1 , c 1 ∈2ℕ+1 , pairwise primes, with necessarly 2≤s∈ℕ ). The key idea of our proof is to show that if (F<sub>0</sub>) holds, then there exist α 2 , β 2 , γ 2 ∈2ℕ+1 , such that ( F 1 ): α 2 4 + ( 2 s−1 β 2 ) 4 = γ 2 4 , holds too. From where, one conclude that it is not possible, because if we choose the quantity 2 ≤ s, as minimal in value among all the solutions of ( F 0 ) , then ( α 2 ,2 s−1 β 2 , γ 2 ) is also a solution of Fermat’s type, but with 2≤s−1<s , witch is absurd. To reach such a result, we suppose first that (F<sub>0</sub>) is solvable in ( a 1 ,2 s b 1 , c 1 ) , s ≥ 2 like above;afterwards, proceeding with “Pythagorician divisors”, we creat the notions of “Fermat’s b-absolute divisors”: ( d b , d ′ b ) which it uses hereafter. Then to conclude our proof, we establish the following main theorem: there is an equivalence between (i) and (ii): (i) (F<sub>0</sub>): a 1 4 + ( 2 s b 1 ) 4 = c 1 4 , is solvable in ℕ , with 2≤s∈ℕ , ( a 1 , b 1 , c 1 )∈ ( 2ℕ+1 ) 3 , coprime in pairs. (ii) ∃( a 1 , b 1 , c 1 )∈ ( 2ℕ+1 ) 3 , coprime in pairs, for wich: ∃( b ′ 2 , b 2 , b ″ 2 )∈ ( 2ℕ+1 ) 3 coprime in pairs, and 2≤s∈ℕ , checking b 1 = b ′ 2 b 2 b ″ 2 , and such that for notations: S=s−λ( s−1 ) , with λ∈{ 0,1 } defined by c 1 − a 1 2 ≡λ( mod2 ) , d b =gcd( 2 s b 1 , c 1 − a 1 )= 2 S b 2 and d ′ b = 2 s−S b ′ 2 = 2 s B 2 d b , where ( 2 s B 2 ) 2 =gcd( b 1 2 , c 1 2 − a 1 2 ) , the following system is checked: { c 1 − a 1 = d b 4 2 2+λ = 2 2−λ ( 2 S−1 b 2 ) 4 c 1 + a 1 = 2 1+λ d ′ b 4 = 2 1+λ ( 2 s−S b ′ 2 ) 4 c 1 2 + a 1 2 =2 b ″ 2 4;and this system implies: ( b 1−λ,2 4 ) 2 + ( 2 4s−3 b λ,2 4 ) 2 = ( b ″ 2 2 ) 2;where: ( b 1−λ,2 , b λ,2 , b ″ 2 )={ ( b ′ 2 , b 2 , b ″ 2 )  if λ=0 ( b 2 , b ′ 2 , b ″ 2 )  if λ=1;From where, it is quite easy to conclude, following the method explained above, and which thus closes, part I, of this article. . 展开更多
关键词 Factorisation in Greatest Common Divisor pythagoras Equation Pythagorician Triplets Fermat's Equations Pythagorician Divisors Fermat's Divisors Diophantine Equations of Degree 2 4-Integral Closure of in
在线阅读 下载PDF
具有连续尾数的本原Pythagoras数组 被引量:1
2
作者 乐茂华 《湖南文理学院学报(自然科学版)》 CAS 2007年第2期1-1,共1页
运用初等方法证明了:存在无穷多组具有任意多位连续尾数的本原Pythagoras数组.
关键词 pythagoras数组 连续尾数 同余
在线阅读 下载PDF
论一类特殊的Pythagoras数
3
作者 乐茂华 《衡水学院学报》 2008年第1期1-2,共2页
设x,y,z是正整数.如果x2+y2=z2,则称(x,y,z)是一组Pythagoras数.运用初等方法证明了:恰有12组Pythagoras数(x,y,z)适合6(x+y+z)=xy.
关键词 pythagoras 约束条件 计数
在线阅读 下载PDF
一类Pythagoras问题的推广
4
作者 管训贵 《唐山学院学报》 2012年第3期7-9,共3页
设x,y,z是正整数.若x2+y2=z2,则称(x,y,z)是一组Pythagoras数.本文运用初等方法证明了:(1)恰有12组Pythagoras数(x,y,z)满足2p(x,y,z)=xy,其中p为奇素数;(2)恰有36组Pythagoras数(x,y,z)满足2pq(x+y+z)=xy,其中p,q均为奇素数,且p<q;... 设x,y,z是正整数.若x2+y2=z2,则称(x,y,z)是一组Pythagoras数.本文运用初等方法证明了:(1)恰有12组Pythagoras数(x,y,z)满足2p(x,y,z)=xy,其中p为奇素数;(2)恰有36组Pythagoras数(x,y,z)满足2pq(x+y+z)=xy,其中p,q均为奇素数,且p<q;(3)恰有4.3s组Pythagoras数(x,y,z)满足2p1p2…ps(x+y+z)=xy,其中pi(i=1,2,…,s)均为奇素数,且p1<p2<…<ps。 展开更多
关键词 pythagoras 奇素数 约束条件 计数
在线阅读 下载PDF
关于本原Pythagoras三元数组存在的条件
5
作者 许立炜 《安庆师范学院学报(自然科学版)》 2009年第3期30-32,58,共4页
运用实验和归纳的方法,利用Mathematic数学软件观察本原Pythagoras三元数组存在的条件,从理论上论证了Pythagoras三元数组存在的一个必要条件和一个充分条件。
关键词 数学实验 不定方程 pythagoras三元数组
在线阅读 下载PDF
直角四面体中的射影定理与Pythagoras定理 被引量:1
6
作者 舒芳 《惠州学院学报》 2002年第3期20-21,共2页
本文将直角三角形的射影定理与Pythagoras s定理推广到直角四面体中 。
关键词 直角四面体 三面角 射影定理 pythagoras定理
在线阅读 下载PDF
Pythagoras三元数组之间的Lorentz变换
7
作者 张吉尔 《天津师大学报(自然科学版)》 1993年第3期7-11,共5页
Pythagoras三元数组历来为几何与数论所重视,近年来有不少文章从其他角度对之加以探讨([1]-[6])。本文试图用Lorentz变换来建立Pythagoras三元数组之间的关系。
关键词 pythagoras 三元数组 洛伦兹变换
在线阅读 下载PDF
From Pythagoras Theorem to Fermat’s Last Theorem and the Relationship between the Equation of Degree <i>n</i>with One Unknown
8
作者 Yufeng Xia 《Advances in Pure Mathematics》 2020年第3期125-154,共30页
The most interesting and famous problem that puzzled the mathematicians all around the world is much likely to be the Fermat’s Last Theorem. However, since the Theorem was proposed, people can’t find a way to solve ... The most interesting and famous problem that puzzled the mathematicians all around the world is much likely to be the Fermat’s Last Theorem. However, since the Theorem was proposed, people can’t find a way to solve the problem until Andrew Wiles proved the Fermat’s Last Theorem through a very difficult method called Modular elliptic curves in 1995. In this paper, I firstly constructed a geometric method to prove Fermat’s Last Theorem, and in this way we can easily get the conclusion below: If a and b are integer and?a = b, n ∈ Q and n > 1, the value of c satisfies the function an + bn = cn that can never be integer;if a, b and c are integer and a ≠ b, n is integer and n > 2, the function an + bn = cn cannot be established. 展开更多
关键词 pythagoras THEOREM Fermat’s LAST THEOREM Geometric Method EQUATION of DEGREE n with One UNKNOWN
在线阅读 下载PDF
三维空间的余弦定理与Pythagoras定理
9
作者 刘敏媛 《成才之路》 2007年第3期26-27,共2页
本文导出三维空间中四面体的余弦定理,并推出直角四面体的Pythagoras定理。
关键词 四面体 余弦定理 直角四面体 pythagoras定理
在线阅读 下载PDF
A New Proof for Congruent Number’s Problem via Pythagorician Divisors
10
作者 Léopold Dèkpassi Keuméan François Emmanuel Tanoé 《Advances in Pure Mathematics》 2024年第4期283-302,共20页
Considering Pythagorician divisors theory which leads to a new parameterization, for Pythagorician triplets ( a,b,c )∈ ℕ 3∗ , we give a new proof of the well-known problem of these particular squareless numbers n∈ ℕ... Considering Pythagorician divisors theory which leads to a new parameterization, for Pythagorician triplets ( a,b,c )∈ ℕ 3∗ , we give a new proof of the well-known problem of these particular squareless numbers n∈ ℕ ∗ , called congruent numbers, characterized by the fact that there exists a right-angled triangle with rational sides: ( A α ) 2 + ( B β ) 2 = ( C γ ) 2 , such that its area Δ= 1 2 A α B β =n;or in an equivalent way, to that of the existence of numbers U 2 , V 2 , W 2 ∈ ℚ 2∗ that are in an arithmetic progression of reason n;Problem equivalent to the existence of: ( a,b,c )∈ ℕ 3∗ prime in pairs, and f∈ ℕ ∗ , such that: ( a−b 2f ) 2 , ( c 2f ) 2 , ( a+b 2f ) 2 are in an arithmetic progression of reason n;And this problem is also equivalent to that of the existence of a non-trivial primitive integer right-angled triangle: a 2 + b 2 = c 2 , such that its area Δ= 1 2 ab=n f 2 , where f∈ ℕ ∗ , and this last equation can be written as follows, when using Pythagorician divisors: (1) Δ= 1 2 ab= 2 S−1 d e ¯ ( d+ 2 S−1 e ¯ )( d+ 2 S e ¯ )=n f 2;Where ( d, e ¯ )∈ ( 2ℕ+1 ) 2 such that gcd( d, e ¯ )=1 and S∈ ℕ ∗ , where 2 S−1 , d, e ¯ , d+ 2 S−1 e ¯ , d+ 2 S e ¯ , are pairwise prime quantities (these parameters are coming from Pythagorician divisors). When n=1 , it is the case of the famous impossible problem of the integer right-angled triangle area to be a square, solved by Fermat at his time, by his famous method of infinite descent. We propose in this article a new direct proof for the numbers n=1 (resp. n=2 ) to be non-congruent numbers, based on an particular induction method of resolution of Equation (1) (note that this method is efficient too for general case of prime numbers n=p≡a ( ( mod8 ) , gcd( a,8 )=1 ). To prove it, we use a classical proof by induction on k , that shows the non-solvability property of any of the following systems ( t=0 , corresponding to case n=1 (resp. t=1 , corresponding to case n=2 )): ( Ξ t,k ){ X 2 + 2 t ( 2 k Y ) 2 = Z 2 X 2 + 2 t+1 ( 2 k Y ) 2 = T 2 , where k∈ℕ;and solutions ( X,Y,Z,T )=( D k , E k , f k , f ′ k )∈ ( 2ℕ+1 ) 4 , are given in pairwise prime numbers.2020-Mathematics Subject Classification 11A05-11A07-11A41-11A51-11D09-11D25-11D41-11D72-11D79-11E25 . 展开更多
关键词 Prime Numbers-Diophantine Equations of Degree 2 & 4 Factorization Greater Common Divisor pythagoras Equation Pythagorician Triplets Congruent Numbers Inductive Demonstration Method Infinite Descent BSD Conjecture
在线阅读 下载PDF
The Coxeter Trisection and the Hadwiger Conjecture in Multidimensional Spaces
11
作者 István Lénárt 《Journal of Applied Mathematics and Physics》 2024年第12期4301-4321,共21页
In this article, I consider the right triangle as the simplex in the Euclidean plane, and extend this definition to higher dimensions. The n-dimensional simplex has one hypotenuse and (n−1)legs (catheti). The (n−1)leg... In this article, I consider the right triangle as the simplex in the Euclidean plane, and extend this definition to higher dimensions. The n-dimensional simplex has one hypotenuse and (n−1)legs (catheti). The (n−1)legs define an orthogonal path of edges in the solid with perpendicular adjacent edges along the path. The length of the hypotenuse and the volume of the solid can be calculated without the Cayley-Menger determinant, by direct extension of the corresponding right triangle formulas. I give a proof of the existence of these shapes, describe the distribution of right angles in them, give an algebraic proof of the Coxeter trisection of a right tetrahedron into three smaller right tetrahedra, and generalize this construction to n-dimensional spaces. Finally, I investigate the connection between the Coxeter partition and the Hadwiger conjecture on the partition of the simplex into orthoschemes, which I call Pythagorean simplexes. 展开更多
关键词 Generalized pythagoras Theorem Description of a Pythagorean Simplex Pythagorean Unit Simplex Coxeter Partition of a Simplex in -Dimensional Space Relation to the Hadwiger Conjecture
在线阅读 下载PDF
Steinhaus问题及其证明 被引量:2
12
作者 杜心华 邓丽洪 《数学进展》 CSCD 北大核心 2012年第1期81-90,共10页
本文利用Pythagoras数组的性质,导出了与此问题等价的相关量的表述,证明了可以按某种方式把平面上的点划分为不相交的四类点集,而在每一类点集中都不存在整距点.
关键词 pythagoras数组 整距问题 离散变量
原文传递
关于丢番图方程x2+b2y1=c2z1的解 被引量:2
13
作者 杨仕椿 《北华大学学报(自然科学版)》 CAS 2003年第5期372-374,共3页
设s,t∈N+,(s,t)=1,s>t,且a=2st,b=s2-t2,c=s2+t2.用初等方法证明了当c为素数幂时,丢番图方程x2+b2y1=c2z1仅有正整数解(x,y1,z1)=(a,1,1),推广了相关结果.
关键词 丢番图方程 素数方幂 正整数解 pythagoras
在线阅读 下载PDF
关于Steinhaus整点问题的证明 被引量:3
14
作者 乐茂华 《商洛学院学报》 2006年第4期9-9,20,共2页
研究了数论中的steinhaus问题,给出了steinhaus问题中整点不存在性的证明.
关键词 Steinhaus整点 pythagoras 存在性
在线阅读 下载PDF
方程(x^4+y^4+z^4)~2=2(x^8+y^8+z^8)的整数解 被引量:1
15
作者 乐茂华 《天中学刊》 2006年第5期7-7,16,共2页
给出了方程(x4+y4+z4)2=2(x8+y8+z8)的所有整数解(x,y,z).
关键词 高次DIOPHANTINE方程 整数解 pythagoras
在线阅读 下载PDF
Apollonius圆的一些新性质及其应用 被引量:1
16
作者 蒲永锋 《阿坝师范高等专科学校学报》 2006年第1期124-125,共2页
通过讨论Apollonius圆的一些新性质,并利用它巧妙地证明了本原Pythagoras数组的参数表示形式。
关键词 Apollonius圆 焦点 定比 本原pythagoras数组
在线阅读 下载PDF
一类高次Diophantine方程的求解
17
作者 冉银霞 冉延平 《徐州工程学院学报(自然科学版)》 CAS 2008年第2期64-65,共2页
讨论了一类高次Diophantine方程的求解问题,并给出了该Diophantine方程在n为偶数时的所有整数解。
关键词 高次DIOPHANTINE方程 整数解 pythagoras
在线阅读 下载PDF
等腰Heron三角形的充要条件
18
作者 黄寿生 《南华大学学报(自然科学版)》 2006年第4期29-30,共2页
Heron三角形是数论中的一个引人关注的问题.本文给出了:当且仅当(a,b)=(d(u2+v2),4duv)或(d(u2+v2),2d(u2-v2)),等腰三角形△是Heron三角形.
关键词 HERON三角形 等腰三角形 pythagoras
在线阅读 下载PDF
等腰Heron三角形
19
作者 乐茂华 《邵阳学院学报(自然科学版)》 2006年第4期1-1,共1页
本文给出了所有的等腰Heron三角形.
关键词 HERON三角形 等腰三角形 pythagoras
在线阅读 下载PDF
一类等差数列中的完全项
20
作者 陈锡庚 《湛江师范学院学报》 1996年第2期40-42,共3页
文中给出了差等于3的等差数列中含有完全项的充要条件;并且在该条件成立时,给出了数列中的所有完全项。
关键词 等差数列 完全项 pythagoras定理 PELL方程
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部