This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and...This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and their mixture,followed by flotation in the cleaner stage.The flotation performance of rough Cu concentrate can be improved by changing the regrinding conditions based on the Py content.Scanning electron microscopy,X-ray spectrometry,ethylenediaminetetraacetic acid disodium salt extraction,and X-ray photoelectron spectroscopy studies illustrated that when the Py content was high,the use of iron media in regrinding promoted the generation of hydrophilic Fe OOH on the surface of Py and improved the Cu grade.The ceramic medium with a low Py content prevented excessive Fe OOH from covering the surface of chalcopyrite(Cpy).Electrochemical studies further showed that the galvanic corrosion current of Cpy-Py increased with the addition of Py and became stronger with the participation of iron media.展开更多
Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger in...Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger inhibition effect on pyrite than on chalcopyrite.The separation of chalcopyrite from pyrite was realized by introducing 150 mg/L MFA at a pulp pH of approximately 8.0.The copper grade,copper recovery,and separation efficiency were 28.03%,84.79%,and 71.66%,respectively.Surface adsorption tests,zeta potential determinations,and localized electrochemical impedance spectroscopy tests showed that more MFA adsorbed on pyrite than on chalcopyrite,which weakened the subsequent interactions between pyrite and the collector.Atomic force microscope imaging further confirmed the adsorption of MFA on pyrite,and X-ray photoelectron spectroscopy results indicated that hydrophilic Fe-based species on the pyrite surfaces increased after exposure of pyrite to MFA,thereby decreasing the floatability of pyrite.展开更多
In recent years,the study of chalcopyrite and pyrite flotation surfaces using computational chemistry methods has made significant progress.However,current computational methods are limited by the small size of their ...In recent years,the study of chalcopyrite and pyrite flotation surfaces using computational chemistry methods has made significant progress.However,current computational methods are limited by the small size of their systems and insufficient consideration of hydration and temperature effects,making it difficult to fully replicate the real flotation environment of chalcopyrite and pyrite.In this study,we employed the self-consistent charge density functional tight-binding(SCC-DFTB)parameterization method to develop a parameter set,CuFeOrg,which includes the interactions between Cu-Fe-C-H-O-N-S-P-Zn elements,to investigate the surface interactions in large-scale flotation systems of chalcopyrite and pyrite.The results of bulk modulus,atomic displacement,band structure,surface relaxation,surface Mulliken charge distribution,and adsorption tests of typical flotation reagents on mineral surfaces demonstrate that CuFeOrg achieves DFT-level accuracy while significantly outperforming DFT in computational efficiency.By constructing large-scale hydration systems of mineral surfaces,as well as large-scale systems incorporating the combined interactions of mineral surfaces,flotation reagents,and hydration,we more realistically reproduce the actual flotation environment.Furthermore,the dynamic analysis results are consistent with mineral surface contact angle experiments.Additionally,CuFeOrg lays the foundation for future studies of more complex and diverse chalcopyrite and pyrite flotation surface systems.展开更多
Gold ores in the Jiaozhou region of China are characterized by their abundant reserves,low grade,fine dissemination,and chal-lenges in upgrading.Froth flotation,with xanthate as the collector,is a commonly employed me...Gold ores in the Jiaozhou region of China are characterized by their abundant reserves,low grade,fine dissemination,and chal-lenges in upgrading.Froth flotation,with xanthate as the collector,is a commonly employed method for enriching auriferous pyrite from these ores.This study aimed to develop a more efficient flotation process by utilizing cavitation nanobubbles for a low-grade gold ore.Batch flotation tests demonstrated that nanobubbles significantly enhanced the flotation performance of auriferous pyrite,as evidenced by improved concentrate S and Au grades and their recoveries.The mechanisms underlying this enhancement were explored by investigat-ing surface nanobubble(SNB)formation,bulk nanobubble(BNB)attachment to hydrophobic pyrite surfaces,and nanobubble-induced agglomeration using atomic force microscopy(AFM)and focused beam reflectance measurement(FBRM).The results revealed that nan-obubble coverage on the pyrite surface is a critical factor influencing surface hydrophobicity and agglomeration.SNBs exhibited higher coverage on pyrite surfaces with increased surface hydrophobicity,flow rate,and cavitation time.Similarly,BNB attachment on pyrite surfaces was significantly increased with surface hydrophobicity and cavitation time.Enhanced surface hydrophobicity,along with higher flow rates and cavitation times,promoted pyrite particle agglomeration owing to the increased nanobubble coverage,ultimately leading to improved flotation performance.展开更多
To investigate the mechanisms of how nanobubbles enhance the flotation separation performance of galena from pyrite,the effects of nanobubbles on the surface properties of galena and pyrite and the interactions betwee...To investigate the mechanisms of how nanobubbles enhance the flotation separation performance of galena from pyrite,the effects of nanobubbles on the surface properties of galena and pyrite and the interactions between mineral particles and air bubbles were examined in this study.Various analytical techniques,including focused beam reflectance measurement(FBRM),three-phase contact line(TPCL)analysis,atomic force microscopy(AFM),and contact angle measurement,were employed.It has been demonstrated that nanobubbles significantly enhanced the flotation recovery of galena and its flotation selectivity from pyrite,as compared to the conventional flotation process.The preferential formation of nanobubbles on the galena surface,which is more hydrophobic than pyrite surface,further increased the surface hydrophobicity and agglomeration of galena particles.The introduction of nanobubbles into the flotation system also increased in the maximum TPCL length and detachment length between the galena surface and bubbles,contributing to the enhanced flotation efficiency.展开更多
The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limite...The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits.展开更多
Tetrasodium iminodisuccinate(IDS)was used as an inhibitor in the separation of sphalerite and pyrite in the EX−Cu(II)(ethyl xanthate and Cu2+)system.The flotation test results demonstrated that IDS can effectively sep...Tetrasodium iminodisuccinate(IDS)was used as an inhibitor in the separation of sphalerite and pyrite in the EX−Cu(II)(ethyl xanthate and Cu2+)system.The flotation test results demonstrated that IDS can effectively separate sphalerite and pyrite under low alkaline conditions.Furthermore,high-quality zinc concentrates with a Zn grade of 58.48%and a recovery of 91.24%through mixed mineral flotation were obtained.The fundamental mechanisms were investigated through surface wettability tests,adsorption capacity tests,LEIS,FTIR,and XPS.The results confirmed that IDS prevents the adsorption of EX on the surface of pyrite,thereby reducing the response and reactivity of pyrite.The introduction of IDS causes the detachment of Cu2+from the Cu-activated pyrite surface.This process allowed IDS to chelate with the Fe sites on the surface of pyrite through the-COO-and N-centered active groups.By contrast,IDS exhibits weaker adhesion on the surface of Cu-activated sphalerite,making it easily displaced by EX through competitive adsorption.展开更多
Enhancing the catalytic hydrolysis efficiency of microcystins(MCs)at ambient temperature has been a persistent challenge in water treatment.We employed N_(2)/low-temperature plasma technology to modify the surface of ...Enhancing the catalytic hydrolysis efficiency of microcystins(MCs)at ambient temperature has been a persistent challenge in water treatment.We employed N_(2)/low-temperature plasma technology to modify the surface of natural pyrites(NP),and the resulting nitrogenmodified pyrites(NPN)with a nanorod structure and new Fe-Nx sites are more efficient for the hydrolysis of microcystins-LR(MC-LR).Kinetic experiments revealed that NPN exhibited significantly higher hydrolysis activity(k_(obs)=0.1471 h^(-1))than NP(0.0914 h^(-1)).Liquid chromatography-mass spectrometry(LC/MS)for the intermediates produced by hydrolyzing MC-LR,in situ attenuated total reflectance Fourier transform infrared spectroscopy(in situ ATR-FTIR)and X-ray photoelectron spectroscopy(XPS)analysis unfolded that the Fe and N atoms of Fe-Nx sites on the surface act of NPN as Lewis acid and Bronsted basic respectively,selectively breaking amide bond on MC-LR molecule.This study demonstrates the effectiveness of plasma technology in modifying mineral materials to enhance their catalytic activity,providing a new method for eliminating MCs in practical water treatment.展开更多
The migration and transformation of hexavalent chromium(Cr(VI))in the environment are regulated by pyrite(FeS2).However,variations in pyrite crystal facets influence the adsorption behavior and electron transfer betwe...The migration and transformation of hexavalent chromium(Cr(VI))in the environment are regulated by pyrite(FeS2).However,variations in pyrite crystal facets influence the adsorption behavior and electron transfer between pyrite and Cr(VI),thereby impacting the Cr(VI)reduction performance.Herein,two naturally common facets of pyritewere synthesized hydrothermally to investigate the facet-dependent mechanisms of Cr(VI)reduction.The experimental results revealed that the{111}facet exhibited approximately 1.30–1.50 times higher efficiency in Cr(VI)reduction compared to the{100}facet.Surface analyses and electrochemical results indicated that{111}facet displayed a higher iron-sulfur oxidation level,which was affected by its superior electrochemical properties during the reaction with Cr(VI).Density functional theory(DFT)calculations demonstrated that the narrower band gap and lower work function on{111}facet were more favorable for the electron transfer between Fe(II)and Cr(VI).Furthermore,different adsorption configurations were observed on{100}and{111}surfaces due to the unique arrangements of Fe and S atoms.Specifically,O atoms in Cr_(2)O_(7)^(2−)directly bound with the S sites on{100}but the Fe sites on{111}.According to the density of states(DOS),the Fe site had better reactivity than the S site in the reaction,which appeared to be related to the fracture of S-S bonds.Additionally,the adsorption configuration of Cr_(2)O_(7)^(2−)on{111}surface showed a stronger adsorption energy and a more stable coordination mode,favoring subsequent Cr(VI)reduction process.These findings provide an in-depth analysis of facet-dependent mechanisms underlying Cr(VI)reduction behavior,offering new insights into studying environmental interactions between heavy metals and natural minerals.展开更多
Contaminants in the water environment of different pyritemines have varying characteristics due to different geological origins.Sulfur isotope(δ^(34)S)is an effective tool to reveal the mechanism of water environment...Contaminants in the water environment of different pyritemines have varying characteristics due to different geological origins.Sulfur isotope(δ^(34)S)is an effective tool to reveal the mechanism of water environment contamination,but no investigations have yet analyzed the characteristics and environmental significance of the δ^(34)S in the water environment of different pyritemines.This study involved a field investigation of four typical pyritemines in China(representing volcanic,skarn,sedimentary-metamorphic,and coal-deposited types)and the analysis of the hydrochemistry of aqueous samples and the δ^(34)S of both pyrite and dissolved sulfates.The S isotopes in minerals of different types of mines were associated with the deposit genesis,and S isotopes in the water environment were affected by sulfide minerals and indicative of the contaminant sources,types of contaminants,and contaminant transport processes.The environmental significance of δ^(34)S in the water environment was further explored and a contamination model for pyrite mines established based on S isotope data.The study offers a theoretical foundation for further research on the prevention,control,and management of water pollution at various types of pyrite mines.展开更多
The Linglong gold ore field is situated in the northwestern region of the Jiaodong gold province,China,with over 1000 tons of gold resources.Although the metallogenic mechanism and fluid sources of the Linglong gold d...The Linglong gold ore field is situated in the northwestern region of the Jiaodong gold province,China,with over 1000 tons of gold resources.Although the metallogenic mechanism and fluid sources of the Linglong gold deposit have been the subject of extensive discussion and analyzed by numerous scholars,a definitive conclusion remains elusive.The Jiuqu Au deposit is a significant metallogenic area in the eastern part of the Linglong gold ore field,characterized as a quartz vein-type gold deposit.Gold mineralization in the Jiuqu gold deposit is classified into four stages,primarily occurring within the Late Jurassic Linglong granite and Early Cretaceous Guojialing granodiorite.Pyrite,the primary gold-bearing mineral at the Jiuqu Gold Mine,has been present throughout the metallogenic period,is rich in a variety of trace elements and is closely related to the formation of gold ore.This study focused on evaluating pyrite from the essential metallogenic stages(Stages Ⅰ-Ⅲ)of the Jiuqu gold deposit using scanning electron microscopy(SEM),electron microprobe analysis(EMPA),laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) and laser ablation multi-collector inductively coupled plasma mass spectrometry(LA-MC-ICP-MS) sulfur isotope analysis and detection.The work aimed to reconstruct the origin of metallogenic materials and the evolution of ore-forming fluids and to restrict the genesis of the deposit.Pyrite exhibits discernible alterations in both shape and crystal structure as it progresses through its ore-forming stages.The aforementioned stages can be delineated as follows:type 1 pyrite(PyⅠ),developed in the initial ore stage,is characterized by coarse-to-medium-grained euhedral pyrite in Stage Ⅰ;type 2 pyrite(PyⅡ),developed in the second ore stage,appears during the middle stage of mineralization and is characterized by subhedral or anhedral pyrite;type 3 pyrite(PyⅢ),developed in the third ore stage,primarily occurred in the late-middle stages of mineralization.It is fragmented and coexists with various metal sulfides,including chalcopyrite,sphalerite and galena.The in situ major and elemental compositions of pyrites at Jiuqu indicate that Au,in the form of visible gold,exists in pyrites with low Au and Ag contents throughout all stages.PyⅠ had lower Pb,Bi,Co and Ni contents than those of PyⅡ.PyⅢ displayed decreased Pb,Bi,Co and Ni levels compared with PyⅡ.The δ34S values of the PyⅠ,PyⅡ and PyⅢ pyrite stages ranged from 7.19% to 8.71%,6.24% to 7.68% and 7.66% to 8.07%,respectively.According to the structural and geochemical analysis of pyrite,the ore-forming fluid of the Jiuqu gold deposit was derived from a magmatic-hydrothermal formation created by enriched lithospheric mantle-derived magma,mixing S from Precambrian metamorphic rocks.Previous studies on the H-O isotopes of quartz in the region's ores have indicated the presence of primary magma water.Additionally,studies concerning the C-O isotopes of carbonate minerals in ores have suggested that C may have originated from the mantle.Fluid migration and water-rock interaction resulted in sulfide and gold precipitation.In the Late Meosozoic,lithospheric thinning of eastern North China Craton led to up welling of astheno spheric mantle and partial melting of lithospheric mantle in the Jiaodong area.Under tectonic changes,magmatic-hydro thermal fluid migrated upward along fault structures to form a gold province.展开更多
The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of li...The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of lime can result in pipeline blockage and inadequate recovery of associated precious metals.Therefore,it is necessary to develop new flotation process that minimizes or eliminates the use of lime.In this paper,a novel Fe^(3+)-Cu^(2+)-butyl xanthate process was developed as an alternative to lime for separating of sphalerite from pyrite.The flotation results indicated that with the artificially-mixed minerals,the flotation recovery of pyrite was lower than 16%and that of sphalerite was higher than 47%at pH 5.0−10.0.The zeta potential measurements revealed that ferric ion preferred to adsorb on pyrite,and copper ion displaced with zinc ion from the lattice at the interface of sphalerite.The wettability analyses indicated that the hydrophobicity of sphalerite surface increased apparently after being treated with Fe^(3+)-Cu^(2+)-BX,while the hydrophobicity of pyrite surface remained nearly unchanged.With XPS analysis,Cu-S bond and hydrophilic ferric hydroxide were detected separately on the surface of sphalerite and pyrite after conditioning with Fe^(3+)-Cu^(2+)-BX,which facilitated the flotation separation of sphalerite from pyrite with butyl xanthate collector.展开更多
In coal mining areas,the ambient atmospheric and aqueous oxidation of pyrite minerals(FeS2)associated with coal as well as the other accompanying strata is significant in understanding the extent of acid mine drainage...In coal mining areas,the ambient atmospheric and aqueous oxidation of pyrite minerals(FeS2)associated with coal as well as the other accompanying strata is significant in understanding the extent of acid mine drainage(AMD),the cause of severe environmental pollution.Therefore,in this paper,the oxidation kinetics of the coal-associated pyrite(CAPy)present in a coal sample(TpHM1)has been studied via aqueous leaching depyritization experiments at variety of temperatures and time intervals without the incorporation of any oxidizer.The outcomes obtained are juxtaposed with the standard pyrite mineral(SPM)oxidation at the same experimental conditions.Also,the coal and SPM slurry residues and filtrates obtained after aqueous leaching at 25℃ and 90℃ for 0 h and 24 h,respectively,were extensively analyzed through high-resolution transmission electron microscopy(HR-TEM),Powder X-ray diffraction(P-XRD),and X-ray-photoelectron spectroscopy(XPS)for evaluation of the mineralogical composition and proportions of iron and sulfur components during progression of the oxidation reaction.Both the reactions obey pseudo first-order kinetics during pyrite(FeS_(2))oxidation but a significant difference in the experimentally found activation energies(E_(a))and rate constants(k)values of oxidation kinetics of both CAPy and SPM may be attributed to the varied geochemical compositions of the coal associated pyrite(CAPy).The rate constant for CAPy is much greater than that of SPM implying a higher Ea around 10.838 kJ/mol for SPM as compared to 1.941 kJ/mol for CAPy.The CAPy in coal(TpHM1)is more susceptible to atmospheric oxidation than that of SPM,leading to the formation of acid mine drainage with lower pH.In this paper,the pH values on the basis of stoichiometric pyrite oxidation reaction were calculated and compared with the pH values obtained after aqueous leaching of CAPy to interpret the extent of acid formation and pyrite dissolution.Hence,with the assistance of the current study,further studies on the effects of mineral impurities,whereabouts of pyrite minerals in coal seams,the significance of compositional differences in the CAPy,the effect of metal oxides,and the role of alkalinity producing neutralizing agents of coal in the oxidative dissolution process of pyrite can be investigated.展开更多
Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval anal...Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A.展开更多
Pyrite is widely distributed in estuarine sediments as an inexpensive natural Fenton-like reagent,however,the mechanism on the hydroxyl radical(HO^(·))production by pyrite under estuarine environmental conditions...Pyrite is widely distributed in estuarine sediments as an inexpensive natural Fenton-like reagent,however,the mechanism on the hydroxyl radical(HO^(·))production by pyrite under estuarine environmental conditions is still poorly understood.The batch experiments were performed to investigate the effects of estuarine conditions including aging(in air,in water),seawater anions(Cl^(-),Br^(-)and HCO_(3)^(-))and light on the HO^(·)production by pyrite oxidation.The one-electron transfer dominated the process from O_(2) to HO^(·)induced by oxidation of pyrite.The Fe(oxyhydr)oxide coatings on the surface of pyrite aged in air and water consumed hydrogen peroxide while mediating the electron transfer,and the combined effect of the two resulted in a suppression of HO^(·)production in the early stage of aging and a promotion of HO^(·)production in the later stage of aging.Corrosion of the surface oxide layers by aggressive anions was the main reason for the inhibition of HO^(·)production by Cl^(-)and Br^(-),and the generation of Cl^(·)and Br^(·)may also play a role in the scavenging of HO^(·).HCO_(3)^(-)increased the average rate of HO^(·)production through surface-CO_(2) complexes formed by adsorption on the surface of pyrite.The significant enhancement of HO^(·)production under light was attributed to the formation of photoelectrons induced by photochemical reactions on pyrite and its surface oxide layers.These findings provide new insights into the environmental chemical behavior of pyrite in the estuary and enrich the understanding of natural remediation of estuarine environments.展开更多
A polymetallic layer is usually developed at the bottom of the early Cambrian black shale in Guizhou Province.The mineral that makes up the polymetallic layer is related to the sedimentary facies.To analyze the differ...A polymetallic layer is usually developed at the bottom of the early Cambrian black shale in Guizhou Province.The mineral that makes up the polymetallic layer is related to the sedimentary facies.To analyze the differentiation mechanism between polymetallic deposits(Ni-Mo and V),the Zhijin Gezhongwu profile located in the outer shelf and the Sansui Haishan V deposit located in the lower slope are selected to study the in situ sulfur isotopes and trace elements of pyrite.The results show that δ^(34)S values of pyrite vary widely from−7.8‰to 28‰in the Gezhongwu profile,while the δ^(34)S values are relatively uniform(from 27.8‰to 38.4‰)in the Haishan profile.The isotopic S composition is consistent with the transition that occurs in the sedimentary phase from the shelf to the deep sea on the transgressive Yangtze platform;this indicates that the δ^(34)SO_(4)^(2−)values in seawater must be differently distributed in depositional environments.The sulfur in the Ni-Mo layer is produced after the mixing of seawater and hydrothermal fluid,while the V layer mainly originates from seawater.Overall,the Ni-Mo and V deposits have been differentiated primarily on the basis of the combined effect of continental weathering and hydrothermal fluid.展开更多
With the continuous development of mineral resources to high altitude areas,the study of sulfide ore flotation in unconventional systems has been emphasized.There is a consensus that moderate oxidation of sulfide ore ...With the continuous development of mineral resources to high altitude areas,the study of sulfide ore flotation in unconventional systems has been emphasized.There is a consensus that moderate oxidation of sulfide ore is beneficial to flotation,but the specific suitable dissolved oxygen value is inconclusive,and there are few studies on sulfide ore flotation under low dissolved oxygen environment at high altitude.In this paper,we designed and assembled an atmosphere simulation flotation equipment to simulate the flotation of pyrite at high altitude by controlling the partial pressure of N_(2)/O_(2) and dissolved oxygen under atmospheric conditions.X-ray photoelectron spec-troscopy(XPS),atomic force microscope(AFM),Fourier transform infrared spectrometer(FT-IR),UV-vis spectrophotometer,zeta po-tential,and contact angle measurements were used to reveal the effects of surface oxidation and agent adsorption on pyrite at high altitude(4600 m dissolved oxygen(DO)=4.0 mg/L).The results of pure mineral flotation indicated that the high altitude and low dissolved oxy-gen environment is favorable for pyrite flotation.Contact angle measurements and XPS analysis showed that the high altitude atmosphere nslows down the oxidation of pyrite surface,facilitates S_(n)^(2-)/S^(0) production and enhances surface hydrophobicity.Electrochemical calcula-tions and zeta potential analysis showed that the influence of atmosphere on the form of pyrite adsorption is small,and the different atmo-spheric conditions are consistent with dixanthogen electrochemical adsorption,with lower Zeta potential under high altitude atmosphere and significant potential shift after sodium isobutyl xanthate(SIBX)adsorption.The results of FT-IR,UV-vis,and AFM analysis showed that SIBX adsorbed more on the surface of pyrite under high altitude atmosphere and adsorbed on the surface in a mesh structure com-posed of column/block.The results of the experimental study revealed the reasons for the easy flotation of sulfide ores at high altitude with less collector dosage,and confirmed that the combined DO-pH regulation is beneficial to achieve more efficient flotation of pyrite.展开更多
Pyrite is one of the common authigenic minerals in marine sediments.Previous studies have shown that the morphological and isotopic characteristics of pyrite are closely related to the geochemical environment where it...Pyrite is one of the common authigenic minerals in marine sediments.Previous studies have shown that the morphological and isotopic characteristics of pyrite are closely related to the geochemical environment where it is formed.To better understand the for-mation mechanism of authigenic pyrite,we analyzed the isotopic composition,morphology,and distribution of pyrite in the sediment at 500m below the seafloor from Xisha Trough,South China Sea.Mineral morphologies were observed by scanning electron micros-copy and Raman spectrography.X-Ray computed tomography was applied to measure the particle size of pyrite.The size of pyrite crystals in the matrix sediment mainly ranged between 25 and 65µm(av.ca.40µm),although crystals were larger(av.ca.50μm)in the veins.The pyrites had a fine-grained truncated octahedral shape with occasionally well-developed growth steps,which implies the low growth rate and weak anaerobic oxidation of methane-sulfate reduction when pyrite was formed.Theδ^(34)S values of pyrites ranged from+20.8‰Vienna-defined Canyon Diablo Troilite(V-CDT)to+33.2‰V-CDT and from+44.8‰V-CDT to+48.9‰,which suggest two growth stages.In the first stage,with the continuous low methane flux,the pyrite possibly formed in an environment with good access to seawater.In the second stage,the pyrites mainly developed in sediment fractures and appeared in veins,probably due to the limited availability of sulfate.The less exposure of pyrite to the environment in the second stage was probably caused by sediment accumulation or perturbation.In this study,an episodic pyritization process was identified,and the paleoenvironment was reconstructed for the sediment investigated.展开更多
The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the ...The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the Jurassic-Cretaceous quartz diorite porphyry,while the genesis of this deposit is unclear.This study focused on geological and mineralogical characteristics,in-situ trace elements and S-Pb isotopes of three generations of pyrite of the Huxu deposit to clarify the distribution of trace elements in pyrite,ore-forming fluid and material sources,and genetic types of the deposit.The mineralization stage of the deposit can be divided into quartz-pyrite stage(S1),quartz-pyrite-hematite stage(S2),quartz-polymetallic sulfide stage(S3)and quartz-hematite stage(S4),with the corresponding pyrite being divided into three generations(Py1-Py3).in-situ trace element data of pyrite show that Au in pyrite mainly exists in the form of solid solution(Au^(+)),and the content is relatively low at all stages(0.18 ppm for Py1,0.32 ppm for Py2,0.68 ppm for Py3),while Pb and Zn mainly exist as sulfide inclusions in the pyrite.S-Pb isotopes show that the sulfur and ore-forming material of this deposit are mainly sourced from magma.The mineral association,mineral textures and trace elements in different stages of pyrite indicate that fluid boiling and fluid mixing are the key factors of native gold precipitation in S2 and S4,respectively,while water-rock interaction controlled the precipitation of Pb-Zn sulfides.These integrating with geological characteristics suggests that the deposit should be an intermediate sulfidation epithermal deposit.展开更多
The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction ...The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction of cyanide with pyrite and the decyanation of pyrite cyanide residue were analyzed.Results revealed that high pH value,high cyanide concentration,and high pyrite dosage promoted the interaction of cyanide with pyrite.The cyanidation of pyrite was pseudo-second-order with respect to cyanide.The decyanation of pyrite cyanide residue by Na_(2)SO_(3)/air oxidation was performed.The cyanide removal efficiency was 83.9% after 1 h of reaction time under the optimal conditions of pH value of 11.2,SO_(3)^(2-) dosage of 22 mg·g^(-1),and air flow rate of 1.46 L·min^(-1).X-ray photoelectron spectroscopy analysis of the pyrite samples showed the formation of Fe(Ⅲ)and FeSO_(4) during the cyanidation process.The cyanide that adsorbed on the pyrite surface after cyanidation mainly existed in the forms of free cyanide(CN^(-))and ferrocyanide(Fe(CN)_(6)^(4-)),which were effectively removed by Na_(2)SO_(3)/air oxidation.During the decyanation process,air intake promoted pyrite oxidation and weakened cyanide adsorption on the pyrite surface.This study has practical significance for gold enterprises aiming to mitigate the environmental impact related to cyanide residues.展开更多
基金financially supported by the National Key Research and Development Plan of China(No.2022YFC2904603)the National Natural Science Foundation of China(No.52174268)。
文摘This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and their mixture,followed by flotation in the cleaner stage.The flotation performance of rough Cu concentrate can be improved by changing the regrinding conditions based on the Py content.Scanning electron microscopy,X-ray spectrometry,ethylenediaminetetraacetic acid disodium salt extraction,and X-ray photoelectron spectroscopy studies illustrated that when the Py content was high,the use of iron media in regrinding promoted the generation of hydrophilic Fe OOH on the surface of Py and improved the Cu grade.The ceramic medium with a low Py content prevented excessive Fe OOH from covering the surface of chalcopyrite(Cpy).Electrochemical studies further showed that the galvanic corrosion current of Cpy-Py increased with the addition of Py and became stronger with the participation of iron media.
基金supported by Fundamental Research Projects of Yunnan Province,China(Nos.202101BE070001-009,202301AU070189).
文摘Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger inhibition effect on pyrite than on chalcopyrite.The separation of chalcopyrite from pyrite was realized by introducing 150 mg/L MFA at a pulp pH of approximately 8.0.The copper grade,copper recovery,and separation efficiency were 28.03%,84.79%,and 71.66%,respectively.Surface adsorption tests,zeta potential determinations,and localized electrochemical impedance spectroscopy tests showed that more MFA adsorbed on pyrite than on chalcopyrite,which weakened the subsequent interactions between pyrite and the collector.Atomic force microscope imaging further confirmed the adsorption of MFA on pyrite,and X-ray photoelectron spectroscopy results indicated that hydrophilic Fe-based species on the pyrite surfaces increased after exposure of pyrite to MFA,thereby decreasing the floatability of pyrite.
基金supported by the National Natural Science Foundation of China(No.52374264)the National Key Technologies Research and Development Program of China(No.2024YFC2909600)the Major Science and Technology Projects in Yunnan Province(No.202402AB080010).
文摘In recent years,the study of chalcopyrite and pyrite flotation surfaces using computational chemistry methods has made significant progress.However,current computational methods are limited by the small size of their systems and insufficient consideration of hydration and temperature effects,making it difficult to fully replicate the real flotation environment of chalcopyrite and pyrite.In this study,we employed the self-consistent charge density functional tight-binding(SCC-DFTB)parameterization method to develop a parameter set,CuFeOrg,which includes the interactions between Cu-Fe-C-H-O-N-S-P-Zn elements,to investigate the surface interactions in large-scale flotation systems of chalcopyrite and pyrite.The results of bulk modulus,atomic displacement,band structure,surface relaxation,surface Mulliken charge distribution,and adsorption tests of typical flotation reagents on mineral surfaces demonstrate that CuFeOrg achieves DFT-level accuracy while significantly outperforming DFT in computational efficiency.By constructing large-scale hydration systems of mineral surfaces,as well as large-scale systems incorporating the combined interactions of mineral surfaces,flotation reagents,and hydration,we more realistically reproduce the actual flotation environment.Furthermore,the dynamic analysis results are consistent with mineral surface contact angle experiments.Additionally,CuFeOrg lays the foundation for future studies of more complex and diverse chalcopyrite and pyrite flotation surface systems.
基金support from the National Natural Science Foundation of China(No.52204274)the Shandong Provincial Natural Science Foundation,China(No.ZR2021QE122)+1 种基金Shandong Provincial Department of Science and Technology Key Project,China(No.2023TZXD021)Shandong Provincial Department of Science and Technology,China(No.ZTYJY-KY-2033-11).
文摘Gold ores in the Jiaozhou region of China are characterized by their abundant reserves,low grade,fine dissemination,and chal-lenges in upgrading.Froth flotation,with xanthate as the collector,is a commonly employed method for enriching auriferous pyrite from these ores.This study aimed to develop a more efficient flotation process by utilizing cavitation nanobubbles for a low-grade gold ore.Batch flotation tests demonstrated that nanobubbles significantly enhanced the flotation performance of auriferous pyrite,as evidenced by improved concentrate S and Au grades and their recoveries.The mechanisms underlying this enhancement were explored by investigat-ing surface nanobubble(SNB)formation,bulk nanobubble(BNB)attachment to hydrophobic pyrite surfaces,and nanobubble-induced agglomeration using atomic force microscopy(AFM)and focused beam reflectance measurement(FBRM).The results revealed that nan-obubble coverage on the pyrite surface is a critical factor influencing surface hydrophobicity and agglomeration.SNBs exhibited higher coverage on pyrite surfaces with increased surface hydrophobicity,flow rate,and cavitation time.Similarly,BNB attachment on pyrite surfaces was significantly increased with surface hydrophobicity and cavitation time.Enhanced surface hydrophobicity,along with higher flow rates and cavitation times,promoted pyrite particle agglomeration owing to the increased nanobubble coverage,ultimately leading to improved flotation performance.
基金financial support from the Major Science and Technology Special Project of Yunnan Province,China(No.202302AB080012)the National Natural Science Foundation of China(No.52204274)the Shandong Provincial Natural Science Foundation,China(No.ZR2021QE122).
文摘To investigate the mechanisms of how nanobubbles enhance the flotation separation performance of galena from pyrite,the effects of nanobubbles on the surface properties of galena and pyrite and the interactions between mineral particles and air bubbles were examined in this study.Various analytical techniques,including focused beam reflectance measurement(FBRM),three-phase contact line(TPCL)analysis,atomic force microscopy(AFM),and contact angle measurement,were employed.It has been demonstrated that nanobubbles significantly enhanced the flotation recovery of galena and its flotation selectivity from pyrite,as compared to the conventional flotation process.The preferential formation of nanobubbles on the galena surface,which is more hydrophobic than pyrite surface,further increased the surface hydrophobicity and agglomeration of galena particles.The introduction of nanobubbles into the flotation system also increased in the maximum TPCL length and detachment length between the galena surface and bubbles,contributing to the enhanced flotation efficiency.
基金the National Key Research and Development Program of China(2021YFC2900300)the Natural Science Foundation of Guangdong Province(2024A1515030216)+2 种基金MOST Special Fund from State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(GPMR202437)the Guangdong Province Introduced of Innovative R&D Team(2021ZT09H399)the Third Xinjiang Scientific Expedition Program(2022xjkk1301).
文摘The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits.
基金supports from the National Natural Science Foundation of China(No.52174272)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2021zzts0306)the Hunan Provincial Natural Science Foundation of China(No.2020JJ5736).
文摘Tetrasodium iminodisuccinate(IDS)was used as an inhibitor in the separation of sphalerite and pyrite in the EX−Cu(II)(ethyl xanthate and Cu2+)system.The flotation test results demonstrated that IDS can effectively separate sphalerite and pyrite under low alkaline conditions.Furthermore,high-quality zinc concentrates with a Zn grade of 58.48%and a recovery of 91.24%through mixed mineral flotation were obtained.The fundamental mechanisms were investigated through surface wettability tests,adsorption capacity tests,LEIS,FTIR,and XPS.The results confirmed that IDS prevents the adsorption of EX on the surface of pyrite,thereby reducing the response and reactivity of pyrite.The introduction of IDS causes the detachment of Cu2+from the Cu-activated pyrite surface.This process allowed IDS to chelate with the Fe sites on the surface of pyrite through the-COO-and N-centered active groups.By contrast,IDS exhibits weaker adhesion on the surface of Cu-activated sphalerite,making it easily displaced by EX through competitive adsorption.
基金supported by the National Natural Science Foundation of China(Nos.22076098,22376118 and 21577078)the Outstanding Youth Project of the Natural Science Foundation of Hubei Province(2023AFA054)the 111 Project of China(No.D20015).
文摘Enhancing the catalytic hydrolysis efficiency of microcystins(MCs)at ambient temperature has been a persistent challenge in water treatment.We employed N_(2)/low-temperature plasma technology to modify the surface of natural pyrites(NP),and the resulting nitrogenmodified pyrites(NPN)with a nanorod structure and new Fe-Nx sites are more efficient for the hydrolysis of microcystins-LR(MC-LR).Kinetic experiments revealed that NPN exhibited significantly higher hydrolysis activity(k_(obs)=0.1471 h^(-1))than NP(0.0914 h^(-1)).Liquid chromatography-mass spectrometry(LC/MS)for the intermediates produced by hydrolyzing MC-LR,in situ attenuated total reflectance Fourier transform infrared spectroscopy(in situ ATR-FTIR)and X-ray photoelectron spectroscopy(XPS)analysis unfolded that the Fe and N atoms of Fe-Nx sites on the surface act of NPN as Lewis acid and Bronsted basic respectively,selectively breaking amide bond on MC-LR molecule.This study demonstrates the effectiveness of plasma technology in modifying mineral materials to enhance their catalytic activity,providing a new method for eliminating MCs in practical water treatment.
基金supported by the National Natural Science Foundation of China(No.42277256)the Natural Science Foundation of Hunan Province(No.2022JJ30710)+1 种基金Hunan Province Environmental Protection Research Program(No.HBKT-2021014)Guangdong Province Dabaoshan Mining Co.Ltd Technology Program(Semi-industrial test of 200T/time low-grade copper ore bio-heap leaching).
文摘The migration and transformation of hexavalent chromium(Cr(VI))in the environment are regulated by pyrite(FeS2).However,variations in pyrite crystal facets influence the adsorption behavior and electron transfer between pyrite and Cr(VI),thereby impacting the Cr(VI)reduction performance.Herein,two naturally common facets of pyritewere synthesized hydrothermally to investigate the facet-dependent mechanisms of Cr(VI)reduction.The experimental results revealed that the{111}facet exhibited approximately 1.30–1.50 times higher efficiency in Cr(VI)reduction compared to the{100}facet.Surface analyses and electrochemical results indicated that{111}facet displayed a higher iron-sulfur oxidation level,which was affected by its superior electrochemical properties during the reaction with Cr(VI).Density functional theory(DFT)calculations demonstrated that the narrower band gap and lower work function on{111}facet were more favorable for the electron transfer between Fe(II)and Cr(VI).Furthermore,different adsorption configurations were observed on{100}and{111}surfaces due to the unique arrangements of Fe and S atoms.Specifically,O atoms in Cr_(2)O_(7)^(2−)directly bound with the S sites on{100}but the Fe sites on{111}.According to the density of states(DOS),the Fe site had better reactivity than the S site in the reaction,which appeared to be related to the fracture of S-S bonds.Additionally,the adsorption configuration of Cr_(2)O_(7)^(2−)on{111}surface showed a stronger adsorption energy and a more stable coordination mode,favoring subsequent Cr(VI)reduction process.These findings provide an in-depth analysis of facet-dependent mechanisms underlying Cr(VI)reduction behavior,offering new insights into studying environmental interactions between heavy metals and natural minerals.
基金supported by the National Key R&D Program of China(No.2022YFC3702203)the National Natural Science Foundation of China(Nos.42030706,and 42277405).
文摘Contaminants in the water environment of different pyritemines have varying characteristics due to different geological origins.Sulfur isotope(δ^(34)S)is an effective tool to reveal the mechanism of water environment contamination,but no investigations have yet analyzed the characteristics and environmental significance of the δ^(34)S in the water environment of different pyritemines.This study involved a field investigation of four typical pyritemines in China(representing volcanic,skarn,sedimentary-metamorphic,and coal-deposited types)and the analysis of the hydrochemistry of aqueous samples and the δ^(34)S of both pyrite and dissolved sulfates.The S isotopes in minerals of different types of mines were associated with the deposit genesis,and S isotopes in the water environment were affected by sulfide minerals and indicative of the contaminant sources,types of contaminants,and contaminant transport processes.The environmental significance of δ^(34)S in the water environment was further explored and a contamination model for pyrite mines established based on S isotope data.The study offers a theoretical foundation for further research on the prevention,control,and management of water pollution at various types of pyrite mines.
基金supported by the National Natural Science Foundation of China(42273063)the Young Elite Scientists Sponsorship(YESS)Program of the China Association for Science and Technology(YESS20220661)+1 种基金Fundamental Research Funds for Central Universities(FRF-IDRY-23-004)the Natural Science Foundation of Shandong Province,China(ZR2022QD050).
文摘The Linglong gold ore field is situated in the northwestern region of the Jiaodong gold province,China,with over 1000 tons of gold resources.Although the metallogenic mechanism and fluid sources of the Linglong gold deposit have been the subject of extensive discussion and analyzed by numerous scholars,a definitive conclusion remains elusive.The Jiuqu Au deposit is a significant metallogenic area in the eastern part of the Linglong gold ore field,characterized as a quartz vein-type gold deposit.Gold mineralization in the Jiuqu gold deposit is classified into four stages,primarily occurring within the Late Jurassic Linglong granite and Early Cretaceous Guojialing granodiorite.Pyrite,the primary gold-bearing mineral at the Jiuqu Gold Mine,has been present throughout the metallogenic period,is rich in a variety of trace elements and is closely related to the formation of gold ore.This study focused on evaluating pyrite from the essential metallogenic stages(Stages Ⅰ-Ⅲ)of the Jiuqu gold deposit using scanning electron microscopy(SEM),electron microprobe analysis(EMPA),laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) and laser ablation multi-collector inductively coupled plasma mass spectrometry(LA-MC-ICP-MS) sulfur isotope analysis and detection.The work aimed to reconstruct the origin of metallogenic materials and the evolution of ore-forming fluids and to restrict the genesis of the deposit.Pyrite exhibits discernible alterations in both shape and crystal structure as it progresses through its ore-forming stages.The aforementioned stages can be delineated as follows:type 1 pyrite(PyⅠ),developed in the initial ore stage,is characterized by coarse-to-medium-grained euhedral pyrite in Stage Ⅰ;type 2 pyrite(PyⅡ),developed in the second ore stage,appears during the middle stage of mineralization and is characterized by subhedral or anhedral pyrite;type 3 pyrite(PyⅢ),developed in the third ore stage,primarily occurred in the late-middle stages of mineralization.It is fragmented and coexists with various metal sulfides,including chalcopyrite,sphalerite and galena.The in situ major and elemental compositions of pyrites at Jiuqu indicate that Au,in the form of visible gold,exists in pyrites with low Au and Ag contents throughout all stages.PyⅠ had lower Pb,Bi,Co and Ni contents than those of PyⅡ.PyⅢ displayed decreased Pb,Bi,Co and Ni levels compared with PyⅡ.The δ34S values of the PyⅠ,PyⅡ and PyⅢ pyrite stages ranged from 7.19% to 8.71%,6.24% to 7.68% and 7.66% to 8.07%,respectively.According to the structural and geochemical analysis of pyrite,the ore-forming fluid of the Jiuqu gold deposit was derived from a magmatic-hydrothermal formation created by enriched lithospheric mantle-derived magma,mixing S from Precambrian metamorphic rocks.Previous studies on the H-O isotopes of quartz in the region's ores have indicated the presence of primary magma water.Additionally,studies concerning the C-O isotopes of carbonate minerals in ores have suggested that C may have originated from the mantle.Fluid migration and water-rock interaction resulted in sulfide and gold precipitation.In the Late Meosozoic,lithospheric thinning of eastern North China Craton led to up welling of astheno spheric mantle and partial melting of lithospheric mantle in the Jiaodong area.Under tectonic changes,magmatic-hydro thermal fluid migrated upward along fault structures to form a gold province.
基金Project(52204363)supported by the National Natural Science Foundation of ChinaProject(2024JJ8042)supported by the Hunan Natural Science Foundation,ChinaProject(22C0220)supported by the Education Department of Hunan Province,China。
文摘The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of lime can result in pipeline blockage and inadequate recovery of associated precious metals.Therefore,it is necessary to develop new flotation process that minimizes or eliminates the use of lime.In this paper,a novel Fe^(3+)-Cu^(2+)-butyl xanthate process was developed as an alternative to lime for separating of sphalerite from pyrite.The flotation results indicated that with the artificially-mixed minerals,the flotation recovery of pyrite was lower than 16%and that of sphalerite was higher than 47%at pH 5.0−10.0.The zeta potential measurements revealed that ferric ion preferred to adsorb on pyrite,and copper ion displaced with zinc ion from the lattice at the interface of sphalerite.The wettability analyses indicated that the hydrophobicity of sphalerite surface increased apparently after being treated with Fe^(3+)-Cu^(2+)-BX,while the hydrophobicity of pyrite surface remained nearly unchanged.With XPS analysis,Cu-S bond and hydrophilic ferric hydroxide were detected separately on the surface of sphalerite and pyrite after conditioning with Fe^(3+)-Cu^(2+)-BX,which facilitated the flotation separation of sphalerite from pyrite with butyl xanthate collector.
基金Ministry of Earth Science(Govt.of India)(GPP-0364).
文摘In coal mining areas,the ambient atmospheric and aqueous oxidation of pyrite minerals(FeS2)associated with coal as well as the other accompanying strata is significant in understanding the extent of acid mine drainage(AMD),the cause of severe environmental pollution.Therefore,in this paper,the oxidation kinetics of the coal-associated pyrite(CAPy)present in a coal sample(TpHM1)has been studied via aqueous leaching depyritization experiments at variety of temperatures and time intervals without the incorporation of any oxidizer.The outcomes obtained are juxtaposed with the standard pyrite mineral(SPM)oxidation at the same experimental conditions.Also,the coal and SPM slurry residues and filtrates obtained after aqueous leaching at 25℃ and 90℃ for 0 h and 24 h,respectively,were extensively analyzed through high-resolution transmission electron microscopy(HR-TEM),Powder X-ray diffraction(P-XRD),and X-ray-photoelectron spectroscopy(XPS)for evaluation of the mineralogical composition and proportions of iron and sulfur components during progression of the oxidation reaction.Both the reactions obey pseudo first-order kinetics during pyrite(FeS_(2))oxidation but a significant difference in the experimentally found activation energies(E_(a))and rate constants(k)values of oxidation kinetics of both CAPy and SPM may be attributed to the varied geochemical compositions of the coal associated pyrite(CAPy).The rate constant for CAPy is much greater than that of SPM implying a higher Ea around 10.838 kJ/mol for SPM as compared to 1.941 kJ/mol for CAPy.The CAPy in coal(TpHM1)is more susceptible to atmospheric oxidation than that of SPM,leading to the formation of acid mine drainage with lower pH.In this paper,the pH values on the basis of stoichiometric pyrite oxidation reaction were calculated and compared with the pH values obtained after aqueous leaching of CAPy to interpret the extent of acid formation and pyrite dissolution.Hence,with the assistance of the current study,further studies on the effects of mineral impurities,whereabouts of pyrite minerals in coal seams,the significance of compositional differences in the CAPy,the effect of metal oxides,and the role of alkalinity producing neutralizing agents of coal in the oxidative dissolution process of pyrite can be investigated.
基金funded by the subproject of the National Science and Technology Major Project(No.2017ZX05036004).
文摘Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A.
基金supported by the National Natural Science Foundation of China (No.51709157)the Youth Interdisciplinary Science and Innovative Research Groups of Shandong University (No.2020QNQT014)。
文摘Pyrite is widely distributed in estuarine sediments as an inexpensive natural Fenton-like reagent,however,the mechanism on the hydroxyl radical(HO^(·))production by pyrite under estuarine environmental conditions is still poorly understood.The batch experiments were performed to investigate the effects of estuarine conditions including aging(in air,in water),seawater anions(Cl^(-),Br^(-)and HCO_(3)^(-))and light on the HO^(·)production by pyrite oxidation.The one-electron transfer dominated the process from O_(2) to HO^(·)induced by oxidation of pyrite.The Fe(oxyhydr)oxide coatings on the surface of pyrite aged in air and water consumed hydrogen peroxide while mediating the electron transfer,and the combined effect of the two resulted in a suppression of HO^(·)production in the early stage of aging and a promotion of HO^(·)production in the later stage of aging.Corrosion of the surface oxide layers by aggressive anions was the main reason for the inhibition of HO^(·)production by Cl^(-)and Br^(-),and the generation of Cl^(·)and Br^(·)may also play a role in the scavenging of HO^(·).HCO_(3)^(-)increased the average rate of HO^(·)production through surface-CO_(2) complexes formed by adsorption on the surface of pyrite.The significant enhancement of HO^(·)production under light was attributed to the formation of photoelectrons induced by photochemical reactions on pyrite and its surface oxide layers.These findings provide new insights into the environmental chemical behavior of pyrite in the estuary and enrich the understanding of natural remediation of estuarine environments.
基金supported by the National Natural Science Foundation of China(Grant Nos.42272103,92062221,42063009,U1812402)the Guizhou Provincial Science and Technology Projects(Grant No.Qiankehejichu–ZK[2022]common 213)the Higher Education Scientific Research Projects of the Education Department of Guizhou Province(Grant No.Qianjiaoji[2022]157).
文摘A polymetallic layer is usually developed at the bottom of the early Cambrian black shale in Guizhou Province.The mineral that makes up the polymetallic layer is related to the sedimentary facies.To analyze the differentiation mechanism between polymetallic deposits(Ni-Mo and V),the Zhijin Gezhongwu profile located in the outer shelf and the Sansui Haishan V deposit located in the lower slope are selected to study the in situ sulfur isotopes and trace elements of pyrite.The results show that δ^(34)S values of pyrite vary widely from−7.8‰to 28‰in the Gezhongwu profile,while the δ^(34)S values are relatively uniform(from 27.8‰to 38.4‰)in the Haishan profile.The isotopic S composition is consistent with the transition that occurs in the sedimentary phase from the shelf to the deep sea on the transgressive Yangtze platform;this indicates that the δ^(34)SO_(4)^(2−)values in seawater must be differently distributed in depositional environments.The sulfur in the Ni-Mo layer is produced after the mixing of seawater and hydrothermal fluid,while the V layer mainly originates from seawater.Overall,the Ni-Mo and V deposits have been differentiated primarily on the basis of the combined effect of continental weathering and hydrothermal fluid.
基金supported by of the National Key Research and Development Program of China (No. 2022YFC 2904601)
文摘With the continuous development of mineral resources to high altitude areas,the study of sulfide ore flotation in unconventional systems has been emphasized.There is a consensus that moderate oxidation of sulfide ore is beneficial to flotation,but the specific suitable dissolved oxygen value is inconclusive,and there are few studies on sulfide ore flotation under low dissolved oxygen environment at high altitude.In this paper,we designed and assembled an atmosphere simulation flotation equipment to simulate the flotation of pyrite at high altitude by controlling the partial pressure of N_(2)/O_(2) and dissolved oxygen under atmospheric conditions.X-ray photoelectron spec-troscopy(XPS),atomic force microscope(AFM),Fourier transform infrared spectrometer(FT-IR),UV-vis spectrophotometer,zeta po-tential,and contact angle measurements were used to reveal the effects of surface oxidation and agent adsorption on pyrite at high altitude(4600 m dissolved oxygen(DO)=4.0 mg/L).The results of pure mineral flotation indicated that the high altitude and low dissolved oxy-gen environment is favorable for pyrite flotation.Contact angle measurements and XPS analysis showed that the high altitude atmosphere nslows down the oxidation of pyrite surface,facilitates S_(n)^(2-)/S^(0) production and enhances surface hydrophobicity.Electrochemical calcula-tions and zeta potential analysis showed that the influence of atmosphere on the form of pyrite adsorption is small,and the different atmo-spheric conditions are consistent with dixanthogen electrochemical adsorption,with lower Zeta potential under high altitude atmosphere and significant potential shift after sodium isobutyl xanthate(SIBX)adsorption.The results of FT-IR,UV-vis,and AFM analysis showed that SIBX adsorbed more on the surface of pyrite under high altitude atmosphere and adsorbed on the surface in a mesh structure com-posed of column/block.The results of the experimental study revealed the reasons for the easy flotation of sulfide ores at high altitude with less collector dosage,and confirmed that the combined DO-pH regulation is beneficial to achieve more efficient flotation of pyrite.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030003).
文摘Pyrite is one of the common authigenic minerals in marine sediments.Previous studies have shown that the morphological and isotopic characteristics of pyrite are closely related to the geochemical environment where it is formed.To better understand the for-mation mechanism of authigenic pyrite,we analyzed the isotopic composition,morphology,and distribution of pyrite in the sediment at 500m below the seafloor from Xisha Trough,South China Sea.Mineral morphologies were observed by scanning electron micros-copy and Raman spectrography.X-Ray computed tomography was applied to measure the particle size of pyrite.The size of pyrite crystals in the matrix sediment mainly ranged between 25 and 65µm(av.ca.40µm),although crystals were larger(av.ca.50μm)in the veins.The pyrites had a fine-grained truncated octahedral shape with occasionally well-developed growth steps,which implies the low growth rate and weak anaerobic oxidation of methane-sulfate reduction when pyrite was formed.Theδ^(34)S values of pyrites ranged from+20.8‰Vienna-defined Canyon Diablo Troilite(V-CDT)to+33.2‰V-CDT and from+44.8‰V-CDT to+48.9‰,which suggest two growth stages.In the first stage,with the continuous low methane flux,the pyrite possibly formed in an environment with good access to seawater.In the second stage,the pyrites mainly developed in sediment fractures and appeared in veins,probably due to the limited availability of sulfate.The less exposure of pyrite to the environment in the second stage was probably caused by sediment accumulation or perturbation.In this study,an episodic pyritization process was identified,and the paleoenvironment was reconstructed for the sediment investigated.
基金jointly supported by the foundation from Department of Science and Technology of Jiangxi Province(No.20232BAB213064)National Natural Science Foundation of China(No.42102088)foundation from the State Key Laboratory of Nuclear Resources and Environment(2022NRE33)。
文摘The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the Jurassic-Cretaceous quartz diorite porphyry,while the genesis of this deposit is unclear.This study focused on geological and mineralogical characteristics,in-situ trace elements and S-Pb isotopes of three generations of pyrite of the Huxu deposit to clarify the distribution of trace elements in pyrite,ore-forming fluid and material sources,and genetic types of the deposit.The mineralization stage of the deposit can be divided into quartz-pyrite stage(S1),quartz-pyrite-hematite stage(S2),quartz-polymetallic sulfide stage(S3)and quartz-hematite stage(S4),with the corresponding pyrite being divided into three generations(Py1-Py3).in-situ trace element data of pyrite show that Au in pyrite mainly exists in the form of solid solution(Au^(+)),and the content is relatively low at all stages(0.18 ppm for Py1,0.32 ppm for Py2,0.68 ppm for Py3),while Pb and Zn mainly exist as sulfide inclusions in the pyrite.S-Pb isotopes show that the sulfur and ore-forming material of this deposit are mainly sourced from magma.The mineral association,mineral textures and trace elements in different stages of pyrite indicate that fluid boiling and fluid mixing are the key factors of native gold precipitation in S2 and S4,respectively,while water-rock interaction controlled the precipitation of Pb-Zn sulfides.These integrating with geological characteristics suggests that the deposit should be an intermediate sulfidation epithermal deposit.
基金financially supported by the National Natural Science Foundation of China(No.52274348)the Major projects for the“Revealed Top”Science and Technology of Liaoning Province,China(No.2022JH1/10400024)the National Key Research and Development Program of China(No.2018YFC1902002).
文摘The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction of cyanide with pyrite and the decyanation of pyrite cyanide residue were analyzed.Results revealed that high pH value,high cyanide concentration,and high pyrite dosage promoted the interaction of cyanide with pyrite.The cyanidation of pyrite was pseudo-second-order with respect to cyanide.The decyanation of pyrite cyanide residue by Na_(2)SO_(3)/air oxidation was performed.The cyanide removal efficiency was 83.9% after 1 h of reaction time under the optimal conditions of pH value of 11.2,SO_(3)^(2-) dosage of 22 mg·g^(-1),and air flow rate of 1.46 L·min^(-1).X-ray photoelectron spectroscopy analysis of the pyrite samples showed the formation of Fe(Ⅲ)and FeSO_(4) during the cyanidation process.The cyanide that adsorbed on the pyrite surface after cyanidation mainly existed in the forms of free cyanide(CN^(-))and ferrocyanide(Fe(CN)_(6)^(4-)),which were effectively removed by Na_(2)SO_(3)/air oxidation.During the decyanation process,air intake promoted pyrite oxidation and weakened cyanide adsorption on the pyrite surface.This study has practical significance for gold enterprises aiming to mitigate the environmental impact related to cyanide residues.