The ultra-high-energy(UHE)gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude b≈10.5°.This provides a rare opportunity to spatial...The ultra-high-energy(UHE)gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude b≈10.5°.This provides a rare opportunity to spatially resolve the component of the pulsar wind nebula(PWN)and supernova remnant(SNR)at UHE.This paper conducted a dedicated data analysis of 1LHAASO J0007+7303u using the data collected from December 2019 to July 2023.This source is well detected with significances of 21σand 17σat 8-100 TeV and>100 TeV,respectively.The corresponding extensions are determined to be 0.23°±0.03°and 0.17°±0.03°.The emission is proposed to originate from the relativistic electrons accelerated within the PWN of PSR J0007+7303.The energy spectrum is well described by a power-law with an exponential cutoff function dN/dE=(42.4±4.1)(E/20TeV)^(-2.31+0.11)exp(-E/(110±25Tev))TeV-1 cm^(-2)s^(-1)in the energy range from 8 to 300 TeV,implying a steady-state parent electron spectrum dN_(e)/dE_(e)∝(E_(e)/100TeV)^(-3.13±0.16)exp[(-E_(e)/(373±70TeV))^(2)]at energies above≈50 TeV.The cutoff energy of the electron spectrum is roughly equal to the expected current maximum energy of particles accelerated at the PWN terminal shock.Combining the X-ray and gamma-ray emission,the current space-averaged magnetic field can be limited to≈4.5μG.To satisfy the multi-wavelength spectrum and the y-ray extensions,the transport of relativistic particles within the PWN is likely dominated by the advection process under the free-expansion phase assumption.展开更多
基金in China by the National Natural Science Foundation of China(Grant Nos.12393851,12393854,12393852,12393853,12022502,12205314,12105301,12261160362,12105294,U1931201,and 2024NSFJQ0060)in Thailand by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT)under the High-Potential Research Team Grant Program(Grant No.N42A650868)。
文摘The ultra-high-energy(UHE)gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude b≈10.5°.This provides a rare opportunity to spatially resolve the component of the pulsar wind nebula(PWN)and supernova remnant(SNR)at UHE.This paper conducted a dedicated data analysis of 1LHAASO J0007+7303u using the data collected from December 2019 to July 2023.This source is well detected with significances of 21σand 17σat 8-100 TeV and>100 TeV,respectively.The corresponding extensions are determined to be 0.23°±0.03°and 0.17°±0.03°.The emission is proposed to originate from the relativistic electrons accelerated within the PWN of PSR J0007+7303.The energy spectrum is well described by a power-law with an exponential cutoff function dN/dE=(42.4±4.1)(E/20TeV)^(-2.31+0.11)exp(-E/(110±25Tev))TeV-1 cm^(-2)s^(-1)in the energy range from 8 to 300 TeV,implying a steady-state parent electron spectrum dN_(e)/dE_(e)∝(E_(e)/100TeV)^(-3.13±0.16)exp[(-E_(e)/(373±70TeV))^(2)]at energies above≈50 TeV.The cutoff energy of the electron spectrum is roughly equal to the expected current maximum energy of particles accelerated at the PWN terminal shock.Combining the X-ray and gamma-ray emission,the current space-averaged magnetic field can be limited to≈4.5μG.To satisfy the multi-wavelength spectrum and the y-ray extensions,the transport of relativistic particles within the PWN is likely dominated by the advection process under the free-expansion phase assumption.