固定频率AC-DC的PWM芯片广泛应用于低功率电源中,并一直是业界研究的热点技术。本文概论精确控制此类芯片的输出过功率的三种方法,(1)减小过流保护(Over Current Protecting,简称OCP)的延迟时间T_d,(2)调整OCP的电压阈值和(3)同时调整...固定频率AC-DC的PWM芯片广泛应用于低功率电源中,并一直是业界研究的热点技术。本文概论精确控制此类芯片的输出过功率的三种方法,(1)减小过流保护(Over Current Protecting,简称OCP)的延迟时间T_d,(2)调整OCP的电压阈值和(3)同时调整延迟时间和电压阈值,通过计算分析其优缺点,为芯片的OCP过功率设计提供了技术细节参考。展开更多
This paper we proposed advanced burst mode control technique to reduce the standby power consumption of the switch mode power supply (SMPS). To reduce the standby power consumption, most of the converter use burst mod...This paper we proposed advanced burst mode control technique to reduce the standby power consumption of the switch mode power supply (SMPS). To reduce the standby power consumption, most of the converter use burst mode or skip mode control technique. However Conventional standby mode control techniques have some problems such as audible noise and poor regulation. In proposed techniques, basically, the burst mode control technique is employed to reduce the fundamental switching frequency while limiting the peak drain current. But, in proposed technique, to improve the regulation characteristic, burst period of the proposed technique is shorter than that of the conventional burst mode technique. And also, to reduce the switching loss increase due to the short burst period, burst switching signal of the proposed technique is partially skipped. By using proposed advanced burst mode control technique, calculated standby power is 0.695W while standby power of the conventional burst mode control is 1.014W.展开更多
文摘固定频率AC-DC的PWM芯片广泛应用于低功率电源中,并一直是业界研究的热点技术。本文概论精确控制此类芯片的输出过功率的三种方法,(1)减小过流保护(Over Current Protecting,简称OCP)的延迟时间T_d,(2)调整OCP的电压阈值和(3)同时调整延迟时间和电压阈值,通过计算分析其优缺点,为芯片的OCP过功率设计提供了技术细节参考。
文摘This paper we proposed advanced burst mode control technique to reduce the standby power consumption of the switch mode power supply (SMPS). To reduce the standby power consumption, most of the converter use burst mode or skip mode control technique. However Conventional standby mode control techniques have some problems such as audible noise and poor regulation. In proposed techniques, basically, the burst mode control technique is employed to reduce the fundamental switching frequency while limiting the peak drain current. But, in proposed technique, to improve the regulation characteristic, burst period of the proposed technique is shorter than that of the conventional burst mode technique. And also, to reduce the switching loss increase due to the short burst period, burst switching signal of the proposed technique is partially skipped. By using proposed advanced burst mode control technique, calculated standby power is 0.695W while standby power of the conventional burst mode control is 1.014W.