In this paper,low temperature plasma is used to modify the surface of barium titanate(BaTiO3)nanoparticles in order to enhance the interfacial compatibility between ferroelectric poly(vinylidene fluoride)(PVDF) ...In this paper,low temperature plasma is used to modify the surface of barium titanate(BaTiO3)nanoparticles in order to enhance the interfacial compatibility between ferroelectric poly(vinylidene fluoride)(PVDF) and BaTiO3 nanoparticles.The results demonstrate that oxygenic groups are successfully attached to the BaTiO3 surface,and the quantity of the functional groups increases with the treatment voltage.Furthermore,the effect of modified BaTiO3 nanoparticles on the morphology and crystal structure of the PVDF/BaTiO3 membrane is investigated.The results reveal that the dispersion of BaTiO3 nanoparticles in the PVDF matrix was greatly improved due to the modification of the BaTiO3 nanoparticles by air plasma.It is worth noting that the formation of a β-phase in a PVDF/modified BaTiO3 membrane is observably promoted,which results from the strong interaction between PVDF chains and oxygenic groups fixed on the BaTiO3 surface and the better dispersion of BaTiO3 nanoparticles in the PVDF matrix.Besides,the PVDF/modified BaTiO3 membrane at the treatment voltage of 24 k V exhibits a lower water contact angle(≈68.4°) compared with the unmodified one(≈86.7°).Meanwhile,the dielectric constant of PVDF/BaTiO3 nanocomposites increases with the increase of working voltage.展开更多
BaTiO 3/ PVDF nanocomposites were prepared via in-situ growth of nanosized BaTiO 3 particles in PVDF matrix by using the sol-gel method.The present elements of BaTiO 3/PVDF nanocomposites were analyzed by an electr...BaTiO 3/ PVDF nanocomposites were prepared via in-situ growth of nanosized BaTiO 3 particles in PVDF matrix by using the sol-gel method.The present elements of BaTiO 3/PVDF nanocomposites were analyzed by an electron probe X-ray microanalyser.Nanosized BaTiO 3 grown in the composite films was characterized by an X-ray diffractometer and a transmission electron microscope,and the dielectric properties of the composite films were measured.The distribution of BaTiO 3 nanoparticles in-situ grown in the PVDF matrix was examined using a scanning electron microscope.展开更多
A series of 0-3 composites of the polyvinylidene fluoride (PVDF) and BaTiO 3 was prepared.BaTiO 3 was modified with titanate coupling agent.The dielectric properties and the interfacial interaction of composites by ...A series of 0-3 composites of the polyvinylidene fluoride (PVDF) and BaTiO 3 was prepared.BaTiO 3 was modified with titanate coupling agent.The dielectric properties and the interfacial interaction of composites by different preparation methods were examined and compared.The result shows that the relative dielectric constant ε of the composite prepared in solution has a maximum value at about 70% weight fraction of BaTiO 3 and the dielectric loss tanδ increases rapidly when the fraction exceeds 70%.For the composite prepared in melt,the relative dielectric constant ε almost reaches a maximum value at about 60% weight fraction of BaTiO 3 and the dielectric loss is comparatively lower.The dielectric properties of composites are improved by using a coupling agent.展开更多
基金financial support from the Opening Project of the State Key Laboratory of Polymer Materials Engineering (Sichuan University) (Grant No.Sklpme2015-4-24)the Provincial Department of Education Science General Foundation of Liaoning (Contract No.L2015017)
文摘In this paper,low temperature plasma is used to modify the surface of barium titanate(BaTiO3)nanoparticles in order to enhance the interfacial compatibility between ferroelectric poly(vinylidene fluoride)(PVDF) and BaTiO3 nanoparticles.The results demonstrate that oxygenic groups are successfully attached to the BaTiO3 surface,and the quantity of the functional groups increases with the treatment voltage.Furthermore,the effect of modified BaTiO3 nanoparticles on the morphology and crystal structure of the PVDF/BaTiO3 membrane is investigated.The results reveal that the dispersion of BaTiO3 nanoparticles in the PVDF matrix was greatly improved due to the modification of the BaTiO3 nanoparticles by air plasma.It is worth noting that the formation of a β-phase in a PVDF/modified BaTiO3 membrane is observably promoted,which results from the strong interaction between PVDF chains and oxygenic groups fixed on the BaTiO3 surface and the better dispersion of BaTiO3 nanoparticles in the PVDF matrix.Besides,the PVDF/modified BaTiO3 membrane at the treatment voltage of 24 k V exhibits a lower water contact angle(≈68.4°) compared with the unmodified one(≈86.7°).Meanwhile,the dielectric constant of PVDF/BaTiO3 nanocomposites increases with the increase of working voltage.
文摘BaTiO 3/ PVDF nanocomposites were prepared via in-situ growth of nanosized BaTiO 3 particles in PVDF matrix by using the sol-gel method.The present elements of BaTiO 3/PVDF nanocomposites were analyzed by an electron probe X-ray microanalyser.Nanosized BaTiO 3 grown in the composite films was characterized by an X-ray diffractometer and a transmission electron microscope,and the dielectric properties of the composite films were measured.The distribution of BaTiO 3 nanoparticles in-situ grown in the PVDF matrix was examined using a scanning electron microscope.
基金theNationalNaturalScienceFoundationofChina (No .5 0 172 0 10 )
文摘A series of 0-3 composites of the polyvinylidene fluoride (PVDF) and BaTiO 3 was prepared.BaTiO 3 was modified with titanate coupling agent.The dielectric properties and the interfacial interaction of composites by different preparation methods were examined and compared.The result shows that the relative dielectric constant ε of the composite prepared in solution has a maximum value at about 70% weight fraction of BaTiO 3 and the dielectric loss tanδ increases rapidly when the fraction exceeds 70%.For the composite prepared in melt,the relative dielectric constant ε almost reaches a maximum value at about 60% weight fraction of BaTiO 3 and the dielectric loss is comparatively lower.The dielectric properties of composites are improved by using a coupling agent.