When immersed in sand and dust environment,aero-engine blades are exposed to harsh erosion which may lead to failure if erosion is severe.Using Physical Vapor Deposition(PVD)to prepare hard ceramic coatings can greatl...When immersed in sand and dust environment,aero-engine blades are exposed to harsh erosion which may lead to failure if erosion is severe.Using Physical Vapor Deposition(PVD)to prepare hard ceramic coatings can greatly enhance the operational capabilities of aero-engine.However,due to the“line-of-sight”processing characteristic of PVD process,uneven coating deposition rates occur when preparing coatings on obstructed areas such as blisks.Quantitative research on such phenomena is few,and it is even rarer in the study of aero-engine coatings.Based on the analyses and considerations of the geometric shape of blade surfaces and the influence of both deposition and re-sputtering effect,an ideal model is established to analyze the deposition rate variation along blocked region in complex self-shadowing boundaries.The relative deposition rates at various locations on the blade surface within the inter-blade gaps are quantitatively calculated and experimentally validated.Furthermore,differences in erosion resistance of the coatings are tested.The conclusions are drawn as follows:the geometric configuration of the obstructed shape and resputtering phenomenon significantly influence the deposition rates within the inner wall of blade gaps.Taking the structural configuration as an example,in a 25 mm×60 mm×15 mm gap,the coating thickness can vary more than 252%from the thickest to the thinnest location.The deposition rates of various locations are proportional to the solid angle of incident ion in more obstructed regions,and the re-sputtering is more prominent in open regions.Obstructive boundaries directly affect the erosion resistance at various locations within the gaps,with erosion failure time decreasing by 40%in heavily blocked region compared to open region.展开更多
采用PVD陶瓷覆膜工艺对控压钻井节流阀阀芯表面处理,通过实验对比研究不同表面覆膜处理的阀芯耐冲蚀性能。结果表明,经过冲蚀后,Ti Al N涂层材料阀芯的质量损失约为Ti N涂层材料的1/3,Ti Al N涂层材料阀芯冲蚀最严重处表面轮廓损失约为T...采用PVD陶瓷覆膜工艺对控压钻井节流阀阀芯表面处理,通过实验对比研究不同表面覆膜处理的阀芯耐冲蚀性能。结果表明,经过冲蚀后,Ti Al N涂层材料阀芯的质量损失约为Ti N涂层材料的1/3,Ti Al N涂层材料阀芯冲蚀最严重处表面轮廓损失约为Ti N涂层材料的1/2,Ti Al N涂层材料在提升控压钻井节流阀耐冲蚀性能和使用可靠性上较Ti N涂层材料优越。展开更多
基金financially supported by the Shaanxi Provincial Science and Technology Innovation Team,China(No.2024RS-CXTD-26)。
文摘When immersed in sand and dust environment,aero-engine blades are exposed to harsh erosion which may lead to failure if erosion is severe.Using Physical Vapor Deposition(PVD)to prepare hard ceramic coatings can greatly enhance the operational capabilities of aero-engine.However,due to the“line-of-sight”processing characteristic of PVD process,uneven coating deposition rates occur when preparing coatings on obstructed areas such as blisks.Quantitative research on such phenomena is few,and it is even rarer in the study of aero-engine coatings.Based on the analyses and considerations of the geometric shape of blade surfaces and the influence of both deposition and re-sputtering effect,an ideal model is established to analyze the deposition rate variation along blocked region in complex self-shadowing boundaries.The relative deposition rates at various locations on the blade surface within the inter-blade gaps are quantitatively calculated and experimentally validated.Furthermore,differences in erosion resistance of the coatings are tested.The conclusions are drawn as follows:the geometric configuration of the obstructed shape and resputtering phenomenon significantly influence the deposition rates within the inner wall of blade gaps.Taking the structural configuration as an example,in a 25 mm×60 mm×15 mm gap,the coating thickness can vary more than 252%from the thickest to the thinnest location.The deposition rates of various locations are proportional to the solid angle of incident ion in more obstructed regions,and the re-sputtering is more prominent in open regions.Obstructive boundaries directly affect the erosion resistance at various locations within the gaps,with erosion failure time decreasing by 40%in heavily blocked region compared to open region.
文摘采用PVD陶瓷覆膜工艺对控压钻井节流阀阀芯表面处理,通过实验对比研究不同表面覆膜处理的阀芯耐冲蚀性能。结果表明,经过冲蚀后,Ti Al N涂层材料阀芯的质量损失约为Ti N涂层材料的1/3,Ti Al N涂层材料阀芯冲蚀最严重处表面轮廓损失约为Ti N涂层材料的1/2,Ti Al N涂层材料在提升控压钻井节流阀耐冲蚀性能和使用可靠性上较Ti N涂层材料优越。