期刊文献+
共找到112,070篇文章
< 1 2 250 >
每页显示 20 50 100
Role of PV-Powered Vehicles in Low-Carbon Society and Some Approaches of High-Efficiency Solar Cell Modules for Cars 被引量:1
1
作者 Masafumi Yamaguchi Taizo Masuda +11 位作者 Kenji Araki Daisuke Sato Kan-Hua Lee Nobuaki Kojima Tatsuya Takamoto Kenichi Okumura Akinori Satou Kazumi Yamada Takashi Nakado Yusuke Zushi Mitsuhiro Yamazaki Hiroyuki Yamada 《Energy and Power Engineering》 2020年第6期375-395,共21页
Development of highly-efficient photovoltaic (PV) modules and expanding its application fields are significant for the further development of PV technologies and realization of innovative green energy infrastructure b... Development of highly-efficient photovoltaic (PV) modules and expanding its application fields are significant for the further development of PV technologies and realization of innovative green energy infrastructure based on PV. Especially, development of solar-powered vehicles as a new application is highly desired and very important for this end. This paper presents the impact of PV cell/module conversion efficiency on reduction in CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> emission and increase in driving range of the electric based vehicles. Our studies show that the utilization of a highly-efficient (higher than 30%) PV module enables the solar-powered vehicle to drive 30 km/day without charging in the case of light weig</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">h</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t cars with elec</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ric mileage of 17</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">km/kWh under solar irrad</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">i</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ion of 3.7</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">kWh/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">/day, which means that the majority of the family cars in Japan can run only by the sunlight without supplying fossil fuels. Thus, it is essential to develop high-efficiency as well as low-cost solar cells and modules for automotive applications. The analytical results developed by the authors for conversion efficiency potential of various solar cells for choosing candidates of the PV modules for automotive applications are shown. Then we overview the conversion efficiency potential and recent progress of various Si tandem solar cells, such as III-V/Si, II-VI/Si, chalcopyrite/Si, and perovskite/Si tandem solar cells. The III-V/Si tandem solar cells are expected to have a high potential for various applications because of its high conversion efficiency of larger than 36% for dual-junction and 42% for triple-junction solar cells under 1-sun AM1.5 G illumination, lightweight and low-cost potentials. The analysis show</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> that III-V based multi-junction and Si based tandem solar cells are considered to be promising candidates for the automotive application. Finally, we report recent results for our 28.2% efficiency and Sharp’s 33% mechanically stacked InGaP/GaAs/Si triple-junction solar cell. In addition, new approaches which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> suitable for automotive applications by using III-V triple-junction, and static low concentrator PV modules are also presented. 展开更多
关键词 Solar Cell Powered vehicle Applications High-Efficiency Solar Cells Multi-Junction Solar Cells Tandem Solar Cells MODULES
在线阅读 下载PDF
HS-APF-RRT*: An Off-Road Path-Planning Algorithm for Unmanned Ground Vehicles Based on Hierarchical Sampling and an Enhanced Artificial Potential Field
2
作者 Zhenpeng Jiang Qingquan Liu Ende Wang 《Computers, Materials & Continua》 2026年第1期1218-1235,共18页
Rapidly-exploring Random Tree(RRT)and its variants have become foundational in path-planning research,yet in complex three-dimensional off-road environments their uniform blind sampling and limited safety guarantees l... Rapidly-exploring Random Tree(RRT)and its variants have become foundational in path-planning research,yet in complex three-dimensional off-road environments their uniform blind sampling and limited safety guarantees lead to slow convergence and force an unfavorable trade-off between path quality and traversal safety.To address these challenges,we introduce HS-APF-RRT*,a novel algorithm that fuses layered sampling,an enhanced Artificial Potential Field(APF),and a dynamic neighborhood-expansion mechanism.First,the workspace is hierarchically partitioned into macro,meso,and micro sampling layers,progressively biasing random samples toward safer,lower-energy regions.Second,we augment the traditional APF by incorporating a slope-dependent repulsive term,enabling stronger avoidance of steep obstacles.Third,a dynamic expansion strategy adaptively switches between 8 and 16 connected neighborhoods based on local obstacle density,striking an effective balance between search efficiency and collision-avoidance precision.In simulated off-road scenarios,HS-APF-RRT*is benchmarked against RRT*,GoalBiased RRT*,and APF-RRT*,and demonstrates significantly faster convergence,lower path-energy consumption,and enhanced safety margins. 展开更多
关键词 RRT* APF path planning OFF-ROAD Unmanned Ground vehicle(UGV)
在线阅读 下载PDF
An Optimal Right-Turn Coordination System for Connected and Automated Vehicles at Urban Intersections
3
作者 Mahmudul Hasan Shuji Doman +2 位作者 A.S.M.Bakibillah Md Abdus Samad Kamal Kou Yamada 《Computers, Materials & Continua》 2026年第1期430-446,共17页
Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination syst... Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles(CAVs)at single-lane intersections,particularly in the context of left-hand side driving on roads.The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks.We consider that all approaching vehicles share relevant information through vehicular communications.The Intersection Coordination Unit(ICU)processes this information and communicates the optimal crossing or turning times to the vehicles.The primary objective of this coordination is to minimize overall traffic delays,which also helps improve the fuel consumption of vehicles.By considering information from upcoming vehicles at the intersection,the coordination system solves an optimization problem to determine the best timing for executing right turns,ultimately minimizing the total delay for all vehicles.The proposed coordination system is evaluated at a typical urban intersection,and its performance is compared to traditional traffic systems.Numerical simulation results indicate that the proposed coordination system significantly enhances the average traffic speed and fuel consumption compared to the traditional traffic system in various scenarios. 展开更多
关键词 Right-turn coordination connected and automated vehicles vehicular communication edge processing urban intersection
在线阅读 下载PDF
Extreme Attitude Prediction of Amphibious Vehicles Based on Improved Transformer Model and Extreme Loss Function
4
作者 Qinghuai Zhang Boru Jia +3 位作者 Zhengdao Zhu Jianhua Xiang Yue Liu Mengwei Li 《哈尔滨工程大学学报(英文版)》 2026年第1期228-238,共11页
Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instabili... Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics. 展开更多
关键词 Amphibious vehicle Attitude prediction Extreme value loss function Enhanced transformer architecture External information embedding
在线阅读 下载PDF
A Multi-Objective Deep Reinforcement Learning Algorithm for Computation Offloading in Internet of Vehicles
5
作者 Junjun Ren Guoqiang Chen +1 位作者 Zheng-Yi Chai Dong Yuan 《Computers, Materials & Continua》 2026年第1期2111-2136,共26页
Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrain... Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively. 展开更多
关键词 Deep reinforcement learning internet of vehicles multi-objective optimization cloud-edge computing computation offloading service caching
在线阅读 下载PDF
Coupling Coordination Development and Driving Factors of New Energy Vehicles and Ecological Environment in China 被引量:3
6
作者 XU Zonghuang 《Wuhan University Journal of Natural Sciences》 2025年第1期79-90,共12页
Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoti... Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoting high-quality development of new energy in China.This paper constructs an evaluation index system for the development of NEVs and the ecological environment.It uses game theory combining weighting model,particle swarm optimized projection tracking evaluation model,coupling coordination degree model,and machine learning algorithms to calculate and analyze the level of coupling coordination development of NEVs and the ecological environment in China from 2010 to 2021,and identifies the driving factors.The research results show that:(i)From 2010 to 2021,the development index of NEVs in China has steadily increased from 0.085 to 0.634,while the ecological environment level index significantly rose from 0.170 to 0.884,reflecting the continuous development of China in both NEVs and the ecological environment.(ii)From 2010 to 2012,the two systems—new energy vehicle(NEV)development and the ecological environment—were in a period of imbalance and decline.From 2013 to 2016,they underwent a transition period,and from 2017 to 2021,they entered a period of coordinated development showing a trend of benign and continuous improvement.By 2021,they reached a good level of coordination.(iii)Indicators such as the number of patents granted for NEVs,water consumption per unit of GDP,and energy consumption per unit of GDP are the main driving factors affecting the coupling coordination development of NEVs and the ecological environment in China. 展开更多
关键词 new energy vehicles(NEVs) ecological environment coupling coordination development machine learning driving factors
原文传递
Fault-tolerant control strategies for tilt-rotor aerial-aquatic vehicles:Design and implementation 被引量:1
7
作者 Sihuan Wu Sifan Wu +3 位作者 Maosen Shao Zhilin He Yuan Liu Jinxiu Zhang 《Defence Technology(防务技术)》 2025年第9期274-293,共20页
The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operatin... The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operating in a single medium.To ensure the reliable and stable completion of tasks by AAVs,this paper proposes a tiltable quadcopter AAV to mitigate the potential issue of rotor failure,which can lead to high-speed spinning or damage during cross-media transitions.Experimental validation demonstrates that this tiltable quadcopter AAV can transform into a dual-rotor or triple-rotor configuration after losing one or two rotors,allowing it to perform cross-domain movements with enhanced stability and maintain task completion.This enhancement significantly improves its fault tolerance and task reliability. 展开更多
关键词 Aerial-aquatic vehicle Tiltable quadcopter FAULT-TOLERANCE Cross-media operation
在线阅读 下载PDF
Anomaly Detection of Controllable Electric Vehicles through Node Equation against Aggregation Attack
8
作者 Jing Guo Ziying Wang +1 位作者 Yajuan Guo Haitao Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期427-442,共16页
The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charg... The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure. 展开更多
关键词 Anomaly detection electric vehicle aggregation attack deep cross-network
在线阅读 下载PDF
Reducing the impact of dynamic wireless charging of electric vehicles on the grid through renewable power integration 被引量:1
9
作者 K.Qiu H.Ribberink E.Entchev 《DeCarbon》 2025年第1期39-46,共8页
Electrification of roadways using dynamic wireless charging(DWC)technology can provide an effective solution to range anxiety,high battery costs and long charging times of electric vehicles(EVs).With DWC systems insta... Electrification of roadways using dynamic wireless charging(DWC)technology can provide an effective solution to range anxiety,high battery costs and long charging times of electric vehicles(EVs).With DWC systems installed on roadways,they constitute a charging infrastructure or electrified roads(eRoads)that have many advantages.For instance,the large battery size of heavy-duty EVs can significantly be downsized due to charging-whiledriving.However,a high power demand of the DWC system,especially during traffic rush periods,could lead to voltage instability in the grid and undesirable power demand curves.In this paper,a model for the power demand is developed to predict the DWC system's power demand at various levels of EV penetration rate.The DWC power demand profile in the chosen 550 km section of a major highway in Canada is simulated.Solar photovoltaic(PV)panels are integrated with the DWC,and the integrated system is optimized to mitigate the peak power demand on the electrical grid.With solar panels of 55,000 kW rated capacity installed along roadsides in the study region,the peak power demand on the electrical grid is reduced from 167.5 to 136.1 MW or by 18.7%at an EV penetration rate of 30%under monthly average daily solar radiation in July.It is evidenced that solar PV power has effectively smoothed the peak power demand on the grid.Moreover,the locally generated renewable power could help ease off expensive grid upgrades and expansions for the eRoad.Also,the economic feasibility of the solar PV integrated DWC system is assessed using cost analysis metrics. 展开更多
关键词 Power demand Electric vehicles Dynamic wireless charging Renewable energy Solar PV Long-haul trucks
暂未订购
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles 被引量:2
10
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ILC) model predictive control(MPC) fault observer
在线阅读 下载PDF
Optimization of an Artificial Intelligence Database and Camera Installation for Recognition of Risky Passenger Behavior in Railway Vehicles
11
作者 Min-kyeong Kim Yeong Geol Lee +3 位作者 Won-Hee Park Su-hwan Yun Tae-Soon Kwon Duckhee Lee 《Computers, Materials & Continua》 SCIE EI 2025年第1期1277-1293,共17页
Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the in... Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the installation of closed-circuit televisions in all carriages by 2024.However,cameras still monitored humans.To address this limitation,we developed a dataset of risk factors and a smart detection system that enables an immediate response to any abnormal behavior and intensive monitoring thereof.We created an innovative learning dataset that takes into account seven unique risk factors specific to Korean railway passengers.Detailed data collection was conducted across the Shinbundang Line of the Incheon Transportation Corporation,and the Ui-Shinseol Line.We observed several behavioral characteristics and assigned unique annotations to them.We also considered carriage congestion.Recognition performance was evaluated by camera placement and number.Then the camera installation plan was optimized.The dataset will find immediate applications in domestic railway operations.The artificial intelligence algorithms will be verified shortly. 展开更多
关键词 AI railway vehicle risk factor smart detection AI training data
在线阅读 下载PDF
Reactive Power Optimization Model of Active Distribution Network with New Energy and Electric Vehicles 被引量:1
12
作者 Chenxu Wang Jing Bian Rui Yuan 《Energy Engineering》 2025年第3期985-1003,共19页
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o... Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem. 展开更多
关键词 Active distribution network new energy electric vehicles dynamic reactive power optimization kmedoids clustering hybrid optimization algorithm
在线阅读 下载PDF
Deep reinforcement learning based integrated evasion and impact hierarchical intelligent policy of exo-atmospheric vehicles 被引量:1
13
作者 Leliang REN Weilin GUO +3 位作者 Yong XIAN Zhenyu LIU Daqiao ZHANG Shaopeng LI 《Chinese Journal of Aeronautics》 2025年第1期409-426,共18页
Exo-atmospheric vehicles are constrained by limited maneuverability,which leads to the contradiction between evasive maneuver and precision strike.To address the problem of Integrated Evasion and Impact(IEI)decision u... Exo-atmospheric vehicles are constrained by limited maneuverability,which leads to the contradiction between evasive maneuver and precision strike.To address the problem of Integrated Evasion and Impact(IEI)decision under multi-constraint conditions,a hierarchical intelligent decision-making method based on Deep Reinforcement Learning(DRL)was proposed.First,an intelligent decision-making framework of“DRL evasion decision”+“impact prediction guidance decision”was established:it takes the impact point deviation correction ability as the constraint and the maximum miss distance as the objective,and effectively solves the problem of poor decisionmaking effect caused by the large IEI decision space.Second,to solve the sparse reward problem faced by evasion decision-making,a hierarchical decision-making method consisting of maneuver timing decision and maneuver duration decision was proposed,and the corresponding Markov Decision Process(MDP)was designed.A detailed simulation experiment was designed to analyze the advantages and computational complexity of the proposed method.Simulation results show that the proposed model has good performance and low computational resource requirement.The minimum miss distance is 21.3 m under the condition of guaranteeing the impact point accuracy,and the single decision-making time is 4.086 ms on an STM32F407 single-chip microcomputer,which has engineering application value. 展开更多
关键词 Exo-atmospheric vehicle Integrated evasion and impact Deep reinforcement learning Hierarchical intelligent policy Single-chip microcomputer Miss distance
原文传递
Multi-Stage Voltage Control Optimization Strategy for Distribution Networks Considering Active-Reactive Co-Regulation of Electric Vehicles
14
作者 Shukang Lyu Fei Zeng +3 位作者 Huachun Han Huiyu Miao Yi Pan Xiaodong Yuan 《Energy Engineering》 EI 2025年第1期221-242,共22页
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis... The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network. 展开更多
关键词 Electric vehicle(EV) distribution network multi-stage optimization active-reactive power regulation voltage control
在线阅读 下载PDF
Synergizing Urban Mobility: The Interplay between Autonomous Vehicles and Autonomous Parking Spaces for Sustainable Development
15
作者 Emmanuel Anu Thompson Evans Tetteh Akoto +2 位作者 Herman Benjamin Atuobi Pan Lu Cephas Kenneth Abbew 《Journal of Transportation Technologies》 2025年第1期50-59,共10页
Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, curr... Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, current interdependence, and future potential through the lens of environmental, social, and economic sustainability. Historically, parking systems evolved from manual designs to automated processes yet remained focused on convenience rather than sustainability. Presently, advancements in smart infrastructure and vehicle-to-infrastructure (V2I) communication have enabled AVs and APS to operate as a cohesive system, optimizing space, energy, and transportation efficiency. Looking ahead, the seamless integration of AVs and APS into broader smart city ecosystems promises to redefine urban landscapes by repurposing traditional parking infrastructure into multifunctional spaces and supporting renewable energy initiatives. These technologies align with global sustainability goals by mitigating emissions, reducing urban sprawl, and fostering adaptive land uses. This reflection highlights the need for collaborative efforts among stakeholders to address regulatory and technological challenges, ensuring the equitable and efficient deployment of AVs and APS for smarter, greener cities. 展开更多
关键词 Autonomous vehicles Autonomous Parking Spaces SUSTAINABILITY Smart Infrastructure
在线阅读 下载PDF
Review:Challenges and Barriers Regarding Electric Vehicles in Modern India with Grid Optimization
16
作者 Venkatraman Ethirajan S.P.Mangaiyarkarasi 《Journal of Harbin Institute of Technology(New Series)》 2025年第1期25-48,共24页
The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on e... The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on electric vehicles,the infrastructure of charging points,production of electric vehicles,and network modelling,this paper provides a comprehensive overview of electric vehicles,and hybrid vehicles,including an analysis of their market growth,as well as different types of optimization used in the current scenario.In developing countries like India,the biggest barrier is their unfulfilled facility over the charging.Without renewable energy sources,vehicle-to-grid technology facilitates the enhancement of additional power requirements.The mobility factor has been considered an important and special characteristic of electric vehicles. 展开更多
关键词 electric vehicles vehicle to grid hybrid vehicles renewable energy
在线阅读 下载PDF
Fixed-time Target-guided Coordinate Control of Unmanned Surface Vehicles Based on Dynamic Surface Control
17
作者 LI Chao−yi XU Hai−xiang +2 位作者 YU Wen−zhao DU Zhe DING Ya−nan 《船舶力学》 北大核心 2025年第6期849-862,共14页
This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b... This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results. 展开更多
关键词 unmanned surface vehicle distributed control target-guided coordinate control fixed-time convergence dynamic surface control
在线阅读 下载PDF
Weighted Voting Ensemble Model Integrated with IoT for Detecting Security Threats in Satellite Systems and Aerial Vehicles
18
作者 Raed Alharthi 《Journal of Computer and Communications》 2025年第2期250-281,共32页
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl... Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy. 展开更多
关键词 Intrusion Detection Cyber-Physical Systems Drone Security Weighted Ensemble Voting Unmanned vehicles Security Strategies
在线阅读 下载PDF
Personalized Aggregation Strategy for Hierarchical Federated Learning in Internet of Vehicles
19
作者 Shi Yan Liu Yujia +1 位作者 Tong Xiaolu Zhou Shukui 《China Communications》 2025年第8期314-331,共18页
In Internet of Vehicles,VehicleInfrastructure-Cloud cooperation supports diverse intelligent driving and intelligent transportation applications.Federated Learning(FL)is the emerging computation paradigm to provide ef... In Internet of Vehicles,VehicleInfrastructure-Cloud cooperation supports diverse intelligent driving and intelligent transportation applications.Federated Learning(FL)is the emerging computation paradigm to provide efficient and privacypreserving collaborative learning.However,in Io V environment,federated learning faces the challenges introduced by high mobility of vehicles and nonIndependently Identically Distribution(non-IID)of data.High mobility causes FL clients quit and the communication offline.The non-IID data leads to slow and unstable convergence of global model and single global model's weak adaptability to clients with different localization characteristics.Accordingly,this paper proposes a personalized aggregation strategy for hierarchical Federated Learning in Io V environment,including Fed SA(Special Asynchronous Federated Learning with Self-adaptive Aggregation)for low-level FL between a Road Side Unit(RSU)and the vehicles within its coverage,and Fed Att(Federated Learning with Attention Mechanism)for high-level FL between a cloud server and multiple RSUs.Agents self-adaptively obtain model aggregation weight based on Advantage Actor-Critic(A2C)algorithm.Experiments show the proposed strategy encourages vehicles to participate in global aggregation,and outperforms existing methods in training performance. 展开更多
关键词 aggregation strategy Internet of vehicles non-IID personalized federated learning vehicle mobility
在线阅读 下载PDF
Reinforcement Learning Based Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles
20
作者 Ruoyan Han Hongwen He +1 位作者 Yaxiong Wang Yong Wang 《Chinese Journal of Mechanical Engineering》 2025年第5期287-296,共10页
With increasingly serious environmental pollution and the energy crisis,fuel cell hybrid electric vehicles have been considered as an ideal alternative to traditional hybrid electric vehicles.Nevertheless,the total co... With increasingly serious environmental pollution and the energy crisis,fuel cell hybrid electric vehicles have been considered as an ideal alternative to traditional hybrid electric vehicles.Nevertheless,the total costs of fuel cell systems are still too high,thus limiting the further development of fuel cell hybrid electric vehicles.This paper presents an energy management strategy(EMS)based on deep reinforcement learning for the energy management of fuel cell hybrid electric vehicles.The energy management model of a fuel cell hybrid electric bus and its main components are established.Considering the power response characteristics of the fuel cell system,the power change rate of the fuel cell system is reasonably limited and introduced as action variables into the network of Double Deep Q-Learning(DDQL),and a novel DDQL-based EMS is developed for the fuel cell hybrid electric bus.Subsequently,a comparative test is conducted with the DP-based and the Rule-based EMS to analyze the performance of the DDQL-based EMS.The results indicate that the proposed EMS achieves good fuel economy performance,with an improvement of 15.4%compared to the Rule-based EMS under the training scenarios.In terms of generalization performance,the proposed EMS also achieves good fuel economy performance,which improves by 13.3%compared to the Rule-based energy management strategy under the testing scenario. 展开更多
关键词 Energy consumption Power management Hybrid electric vehicle Fuel cell vehicle
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部