Around the world,there has been a notable shift toward the use of renewable energy technology due to the growing demand for energy and the ongoing depletion of conventional resources,such as fossil fuels.Following thi...Around the world,there has been a notable shift toward the use of renewable energy technology due to the growing demand for energy and the ongoing depletion of conventional resources,such as fossil fuels.Following this worldwide trend,Brunei’s government has initiated several strategic programs aimed at encouraging the establishment of energy from renewable sources in the nation’s energy mix.These initiatives are designed not only to support environmental sustainability but also to make energy from renewable sources increasingly competitive in comparison to more conventional energy sources like gas and oil,which have historically dominated Brunei’s energy market.The optimization of a hybrid energy system that combines diesel generators,solar photovoltaic(PV)panels,and the national power grid is the focus of this study.The objective is to identify the most cost-effective and environmentally sustainable configuration that can reliably meet local energy demands.During optimization,several configuration was tried and tested,including only grid,PV and Grid and PV-generator.HOMER(Hybrid Optimization of Multiple Energy Resources)software,a popular simulation tool that makes it possible to simulate and analyze hybrid energy systems,is utilized in the optimization process.Inside the HOMER Pro optimization,various system configuration is taken into account for the optimization.While simulating,it takes into account different combinations of components such as solar panels,wind turbines and batteries.Later on,it is being ranked by different factors such as net present cost(NPC),Cost of Energy(COE),etc.A comprehensive techno-economic research is carried out to evaluate various system configurations,considering key performance indicators such as total energy generation cost,operational expenditure,and greenhouse gas emissions.The results provide valuable insights into how renewable-based hybrid systems can reduce environmental impact while maintaining economic viability,supporting Brunei’s broader goals of energy diversification and sustainability.The study also emphasizes how such hybrid systems could be scaled for off-grid and rural populations in Brunei,where a dependable electricity supply is still a problem.Furthermore,sensitivity analyses were performed to evaluate the effects of variations in solar irradiation,load demand,and fuel prices on the overall system performance.Policymakers and energy planners can use these insights to help them make data-driven decisions about future investments in infrastructure for renewable energy.展开更多
This research investigates the design and optimization of a photovoltaic(PV)water pumping system to address seasonal water demands across five locations with varying elevation heads.The systemdraws water froma deep we...This research investigates the design and optimization of a photovoltaic(PV)water pumping system to address seasonal water demands across five locations with varying elevation heads.The systemdraws water froma deep well with a static water level of 30mand a dynamic level of 50m,serving agricultural and livestock needs.The objective of this study is to accurately size a PV system that balances energy generation and demand while minimizing grid dependency.Meanwhile,the study presents a comprehensivemethodology to calculate flowrates,pumping power,daily energy consumption,and system capacity.Therefore,the PV system rating,energy output,and economic performance were evaluated using metrics such as discounted payback period(DPP),net present value(NPV),and sensitivity analysis.The results show that a 2.74 kWp PV system is optimal,producing 4767 kWh/year to meet the system’s annual energy demand of 4686 kWh.In summer,energy demand peaks at 1532.7 kWh,while in winter,it drops to 692.1 kWh.Meanwhile,flow rates range from 11.71 m^(3)/h at 57 m head to 10.49 m^(3)/h at 70 m head,demonstrating the system’s adaptability to diverse hydraulic conditions.Economic analysis reveals that at a 5%interest rate and an electricity price of$0.15/kWh,the NPV is$6981.82 with a DPP of 3.76 years.However,a 30%increase in electricity prices improves the NPV to$10,005.18 and shortens the DPP to 2.76 years,whereas a 20%interest rate reduces the NPV to$1038.79 and extends the DPP to 6.08 years.Nevertheless,the annual PV energy generation exceeds total energy demand by 81 kWh,reducing grid dependency and lowering electricity costs.Additionally,the PV system avoids approximately 3956.6 kg of CO_(2) emissions annually,underscoring its environmental benefits over traditional pumping systems.As a result,this study highlights the economic and environmental viability of PV-powered water pumping systems,offering actionable insights for sustainable energy solutions in agriculture.展开更多
For a standalone PV (photovoltaic) power generation system, the author previously proposed a new MPPT (maximum power point tracking) control method in which the I-V characteristics are scanned with a detection int...For a standalone PV (photovoltaic) power generation system, the author previously proposed a new MPPT (maximum power point tracking) control method in which the I-V characteristics are scanned with a detection interval control that operates at specified intervals and monitors the maximum power point. The author has obtained satisfactory results using this new MPPT control method. This paper investigates the application of the new MPPT control method for a PCS (power conditioning system) in a grid-connected type PV power generation system. The experimental results clearly demonstrate that the developed PCS offers outstanding effectiveness in tracking the maximum power point in partially shaded environments.展开更多
To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and obj...To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and objective combination of assignment and technique for order preference by similarity to an ideal solution(TOPSIS)—rank sum ratio(RSR)(TOPSIS-RSR)method.Based on the traditional distribution network evaluation system,a comprehensive evaluation system has been constructed.It fully considers the new development requirements of distributed PV access on the environmental friendliness and absorptive capacity of the distribution grid and comprehensively reflects the impact of distributed PV grid connection.The analytic hierarchy process(AHP)was used to determine the subjective weights of the primary indicators,and the Spearman consistency test was combined to determine the weights of the secondary indicators based on three objective assignment methods.The subjective and objective combination weights of each assessment indicator were calculated through the principle of minimum entropy.Calculate the distance between the indicators to be evaluated and the positive and negative ideal solutions,the relative closeness ranking,and qualitative binning by TOPSIS-RSR method to obtain the comprehensive evaluation results of different scenarios.By setting up different PV grid-connected scenarios and utilizing the IEEE33 node simulation algorithm,the correctness and effectiveness of the proposed subject-object combination assignment and integrated assessment method are verified.展开更多
The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.Thi...The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.展开更多
The impact of Bapco 5 MW solar PV grid-connected project on Bahrain’s outlook for clean energy and energy-mix production was analyzed since solar electricity obtained from PV installation is considered as a non-linea...The impact of Bapco 5 MW solar PV grid-connected project on Bahrain’s outlook for clean energy and energy-mix production was analyzed since solar electricity obtained from PV installation is considered as a non-linear system. Several positive impacts were counted. These impacts were on business, economy, environment, research, green jobs creation and rooftop installation and other large-scale installation. This project had attracted public, investors, developers to invest in similar projects in the Kingdom of Bahrain;especially it is an environmentally friendly and smart technology. This innovative smart grid-connected 5 MW solar PV power plant is enough to electrify 500 houses @ 10 kW and had answered lots of frustrating questions such as the effect of dust on PV performance, need of man-made cleaning compared to naturally cleaned PV panels, reliability of the system, greenhouse gases reduction and pay-back period.展开更多
Nowadays,the single state inverter for the grid-connected photovoltaic(PV)systems is becoming more and more popular as they can reduce circuit complexity resulting in less power losses of the inverter.This paper focus...Nowadays,the single state inverter for the grid-connected photovoltaic(PV)systems is becoming more and more popular as they can reduce circuit complexity resulting in less power losses of the inverter.This paper focuses on the use of model predictive control(MPC)to control a 3-phase and 2-level single-state grid-connected inverter in order to regulate the PV maximum power point(MPP).The algorithm of MPC scheme was done to measure the simultaneous current signal including predicting the next sampling current flow.The reference current(Id∗)was used to control the distribution of electrical power from the solar cell to the grid.To be able to control the maximum power point tracking(MPPT)when the sunlight suddenly changes,so that a developing MPPT based on estimation current perturbation and observation(ECP&O-MPPT)technique was used to control the reference current.This concept was experimented by using MATLAB/Simulink software package.The proposed technique was tested and compared with the old technique.The simulation results showed that the developed MPPT technique can track the MPP faster when the light changes rapidly under 1,000W/m2,25℃ standard climatic conditions.The MPPT time was 0.015 s.The total harmonic distortion(THD)was 2.17%and the power factor was 1.展开更多
This paper presents a novel active disturbance rejection control(ADRC)scheme based on a cascade connection of generalized proportional integral observers(GPIOs)with internal models designed to estimate both polynomial...This paper presents a novel active disturbance rejection control(ADRC)scheme based on a cascade connection of generalized proportional integral observers(GPIOs)with internal models designed to estimate both polynomial and resonant disturbances.In this estimator structure,referred to as Cascade GPIO(CGPIO),the total disturbance sensitivity is the product of the sensitivities at each cascade level.This approach improves system performance against both periodic and non-periodic disturbances and enhances robustness under frequency variations in harmonic components.Additionally,the decoupled nature of the estimator reduces the order of the GPIOs,thereby simplifying tuning and limiting observer gains.The proposed control scheme is supported by a frequency-domain analysis and is experimentally validated in the current control of a grid-connected converter subject to control gain uncertainties,harmonic distortion,frequency deviations,and measurement noise.Experimental results demonstrate that the CGPIO-based ADRC outperforms benchmark solutions,including proportional-integral(PI)and proportional-resonant(PR)controllers.展开更多
This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any s...This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.展开更多
The photovoltaic grid-connected inverter is an important interface between the photovoltaic power generation system and power grid.Its high-quality operation is directly related to the output power quality of the powe...The photovoltaic grid-connected inverter is an important interface between the photovoltaic power generation system and power grid.Its high-quality operation is directly related to the output power quality of the power grid.In order to further optimize the control effect of the quasi-Z source grid-connected photovoltaic inverter,a fuzzy proportional complex integral control(PCI)method is proposed for the current internal loop control.This method can eliminate the steady-state error,and has the characteristic of zero steady-state error adjustment for the AC disturbance signal of a specific frequency.The inductance-capacitance-inductance(LCL)filter is adopted in the grid-connected circuit,and the feedback capacitive current is taken as the control variable of the inner loop to form the active damping control method,which can not only effectively suppress the resonance of the LCL circuit,but also significantly inhibit the high-order harmonics in the grid-connected current.Finally,a system simulation model is built in MATLAB/Simulink to verify the superiority and effectiveness of the proposed method.展开更多
In the process of grid-connected photovoltaic power generation,there are high requirements for the quality of the power that the inverter breaks into the grid.In this work,to improve the power quality of the grid-conn...In the process of grid-connected photovoltaic power generation,there are high requirements for the quality of the power that the inverter breaks into the grid.In this work,to improve the power quality of the grid-connected inverter into the grid,and the output of the system can meet the grid-connected requirements more quickly and accurately,we exhibit an approach toward establishing a mixed logical dynamical(MLD)model where logic variables were introduced to switch dynamics of the single-phase photovoltaic inverters.Besides,based on the model,our recent efforts in studying the finite control set model predictive control(FCS-MPC)and devising the output current full state observer are exciting for several advantages,including effectively avoiding the problem of the mixed-integer quadratic programming(MIQP),lowering the THD value of the output current of the inverter circuit,improving the quality of the power that the inverter breaks into the grid,and realizing the current output and the grid voltage same frequency and phase to meet grid connection requirements.Finally,the effectiveness of the mentioned methods is verified by MATLAB/Simulink simulation.展开更多
Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar...Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar photovol-taic(PV),as a source of electricity,has grown in popularity over the last few dec-ades because of their clean,noise-free,low-maintenance,and abundant availability of solar energy.There are two types of maximum power point track-ing(MPPT)techniques:classical and evolutionary algorithm-based techniques.Precise and less complex perturb and observe(P&O)and incremental conduc-tance(INC)approaches are extensively employed among classical techniques.This study used afield-programmable gate array(FPGA)-based hardware arrange-ment for a grid-connected photovoltaic(PV)system.The PV panels,MPPT con-trollers,and battery management systems are all components of the proposed system.In the developed hardware prototype,various modes of operation of the grid-connected PV system were examined using P&O and incremental con-ductance MPPT approaches.展开更多
This paper presents a techno-economic investigation of an integrated rooftop solar PV system for typical home applications in Oman that can reduce the power consumption from the grid and export excess PV generated pow...This paper presents a techno-economic investigation of an integrated rooftop solar PV system for typical home applications in Oman that can reduce the power consumption from the grid and export excess PV generated power back to the gird.Since renewable energy systems design technically depends on the site,this study selects a typical two-story villa(Home),in a site Al-Hamra,Oman.Temperature is one of the critical parameters in this design as it varies widely over the day and from one season to another in Oman.With the effect of temperature variation,the PV system has designed using system models for the required load of the home.The design process has included two main design constraints,such as the available rooftop space and the grid-connection availability for the selected home.This research also evaluates the economic feasibility of the design system considering the energy export tariff as per the Bulk Supply Tariff(BST)scheme in Oman.The design outcome reveals that the designed PV system can supply the load energy requirement in a year.In addition,the rooftop solar PV system can sell surplus energy back to the grid that generates additional revenue for the owner of the system.The economic performance indices such as payback period,internal rate of return,net present value,and profitability index ensure the financial feasibility of the designed rooftop solar PV system for the selected home.展开更多
This paper presents the outdoor performance evaluation of different grid-connected PV technologies installed in Cyprus over a two year period. The PV research and testing facility at the University of Cyprus was commi...This paper presents the outdoor performance evaluation of different grid-connected PV technologies installed in Cyprus over a two year period. The PV research and testing facility at the University of Cyprus was commissioned in 2006 to perform continuous measurements of meteorological and PV operational parameters. The test site is appropriately equipped to undertake such evaluations at a very high resolution (1 measurement per second). The perfromance results obtained for the two year evaluation period clearly show how each PV technology has performed under the climatological conditions in Cyprus. Finally the high average energy yield of the fixed plate systems under test, 1580 kWh/kWp and 1609 kWh/kWp during the first and second year of evaluation respectively, also verifies that solar energy is a very promising renewable source of energy for countries with a high solar resource.展开更多
基金funded through Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia—project number“NBU-FFR-2025-3623-06”.
文摘Around the world,there has been a notable shift toward the use of renewable energy technology due to the growing demand for energy and the ongoing depletion of conventional resources,such as fossil fuels.Following this worldwide trend,Brunei’s government has initiated several strategic programs aimed at encouraging the establishment of energy from renewable sources in the nation’s energy mix.These initiatives are designed not only to support environmental sustainability but also to make energy from renewable sources increasingly competitive in comparison to more conventional energy sources like gas and oil,which have historically dominated Brunei’s energy market.The optimization of a hybrid energy system that combines diesel generators,solar photovoltaic(PV)panels,and the national power grid is the focus of this study.The objective is to identify the most cost-effective and environmentally sustainable configuration that can reliably meet local energy demands.During optimization,several configuration was tried and tested,including only grid,PV and Grid and PV-generator.HOMER(Hybrid Optimization of Multiple Energy Resources)software,a popular simulation tool that makes it possible to simulate and analyze hybrid energy systems,is utilized in the optimization process.Inside the HOMER Pro optimization,various system configuration is taken into account for the optimization.While simulating,it takes into account different combinations of components such as solar panels,wind turbines and batteries.Later on,it is being ranked by different factors such as net present cost(NPC),Cost of Energy(COE),etc.A comprehensive techno-economic research is carried out to evaluate various system configurations,considering key performance indicators such as total energy generation cost,operational expenditure,and greenhouse gas emissions.The results provide valuable insights into how renewable-based hybrid systems can reduce environmental impact while maintaining economic viability,supporting Brunei’s broader goals of energy diversification and sustainability.The study also emphasizes how such hybrid systems could be scaled for off-grid and rural populations in Brunei,where a dependable electricity supply is still a problem.Furthermore,sensitivity analyses were performed to evaluate the effects of variations in solar irradiation,load demand,and fuel prices on the overall system performance.Policymakers and energy planners can use these insights to help them make data-driven decisions about future investments in infrastructure for renewable energy.
文摘This research investigates the design and optimization of a photovoltaic(PV)water pumping system to address seasonal water demands across five locations with varying elevation heads.The systemdraws water froma deep well with a static water level of 30mand a dynamic level of 50m,serving agricultural and livestock needs.The objective of this study is to accurately size a PV system that balances energy generation and demand while minimizing grid dependency.Meanwhile,the study presents a comprehensivemethodology to calculate flowrates,pumping power,daily energy consumption,and system capacity.Therefore,the PV system rating,energy output,and economic performance were evaluated using metrics such as discounted payback period(DPP),net present value(NPV),and sensitivity analysis.The results show that a 2.74 kWp PV system is optimal,producing 4767 kWh/year to meet the system’s annual energy demand of 4686 kWh.In summer,energy demand peaks at 1532.7 kWh,while in winter,it drops to 692.1 kWh.Meanwhile,flow rates range from 11.71 m^(3)/h at 57 m head to 10.49 m^(3)/h at 70 m head,demonstrating the system’s adaptability to diverse hydraulic conditions.Economic analysis reveals that at a 5%interest rate and an electricity price of$0.15/kWh,the NPV is$6981.82 with a DPP of 3.76 years.However,a 30%increase in electricity prices improves the NPV to$10,005.18 and shortens the DPP to 2.76 years,whereas a 20%interest rate reduces the NPV to$1038.79 and extends the DPP to 6.08 years.Nevertheless,the annual PV energy generation exceeds total energy demand by 81 kWh,reducing grid dependency and lowering electricity costs.Additionally,the PV system avoids approximately 3956.6 kg of CO_(2) emissions annually,underscoring its environmental benefits over traditional pumping systems.As a result,this study highlights the economic and environmental viability of PV-powered water pumping systems,offering actionable insights for sustainable energy solutions in agriculture.
文摘For a standalone PV (photovoltaic) power generation system, the author previously proposed a new MPPT (maximum power point tracking) control method in which the I-V characteristics are scanned with a detection interval control that operates at specified intervals and monitors the maximum power point. The author has obtained satisfactory results using this new MPPT control method. This paper investigates the application of the new MPPT control method for a PCS (power conditioning system) in a grid-connected type PV power generation system. The experimental results clearly demonstrate that the developed PCS offers outstanding effectiveness in tracking the maximum power point in partially shaded environments.
基金support of the project“State Grid Corporation Headquarters Science and Technology Program(5108-202299258A-1-0-ZB)”.
文摘To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and objective combination of assignment and technique for order preference by similarity to an ideal solution(TOPSIS)—rank sum ratio(RSR)(TOPSIS-RSR)method.Based on the traditional distribution network evaluation system,a comprehensive evaluation system has been constructed.It fully considers the new development requirements of distributed PV access on the environmental friendliness and absorptive capacity of the distribution grid and comprehensively reflects the impact of distributed PV grid connection.The analytic hierarchy process(AHP)was used to determine the subjective weights of the primary indicators,and the Spearman consistency test was combined to determine the weights of the secondary indicators based on three objective assignment methods.The subjective and objective combination weights of each assessment indicator were calculated through the principle of minimum entropy.Calculate the distance between the indicators to be evaluated and the positive and negative ideal solutions,the relative closeness ranking,and qualitative binning by TOPSIS-RSR method to obtain the comprehensive evaluation results of different scenarios.By setting up different PV grid-connected scenarios and utilizing the IEEE33 node simulation algorithm,the correctness and effectiveness of the proposed subject-object combination assignment and integrated assessment method are verified.
文摘The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.
文摘The impact of Bapco 5 MW solar PV grid-connected project on Bahrain’s outlook for clean energy and energy-mix production was analyzed since solar electricity obtained from PV installation is considered as a non-linear system. Several positive impacts were counted. These impacts were on business, economy, environment, research, green jobs creation and rooftop installation and other large-scale installation. This project had attracted public, investors, developers to invest in similar projects in the Kingdom of Bahrain;especially it is an environmentally friendly and smart technology. This innovative smart grid-connected 5 MW solar PV power plant is enough to electrify 500 houses @ 10 kW and had answered lots of frustrating questions such as the effect of dust on PV performance, need of man-made cleaning compared to naturally cleaned PV panels, reliability of the system, greenhouse gases reduction and pay-back period.
基金This research is supported by the MATLAB/Simulink,Rajamangala University of Technology Rattanakosin.
文摘Nowadays,the single state inverter for the grid-connected photovoltaic(PV)systems is becoming more and more popular as they can reduce circuit complexity resulting in less power losses of the inverter.This paper focuses on the use of model predictive control(MPC)to control a 3-phase and 2-level single-state grid-connected inverter in order to regulate the PV maximum power point(MPP).The algorithm of MPC scheme was done to measure the simultaneous current signal including predicting the next sampling current flow.The reference current(Id∗)was used to control the distribution of electrical power from the solar cell to the grid.To be able to control the maximum power point tracking(MPPT)when the sunlight suddenly changes,so that a developing MPPT based on estimation current perturbation and observation(ECP&O-MPPT)technique was used to control the reference current.This concept was experimented by using MATLAB/Simulink software package.The proposed technique was tested and compared with the old technique.The simulation results showed that the developed MPPT technique can track the MPP faster when the light changes rapidly under 1,000W/m2,25℃ standard climatic conditions.The MPPT time was 0.015 s.The total harmonic distortion(THD)was 2.17%and the power factor was 1.
文摘This paper presents a novel active disturbance rejection control(ADRC)scheme based on a cascade connection of generalized proportional integral observers(GPIOs)with internal models designed to estimate both polynomial and resonant disturbances.In this estimator structure,referred to as Cascade GPIO(CGPIO),the total disturbance sensitivity is the product of the sensitivities at each cascade level.This approach improves system performance against both periodic and non-periodic disturbances and enhances robustness under frequency variations in harmonic components.Additionally,the decoupled nature of the estimator reduces the order of the GPIOs,thereby simplifying tuning and limiting observer gains.The proposed control scheme is supported by a frequency-domain analysis and is experimentally validated in the current control of a grid-connected converter subject to control gain uncertainties,harmonic distortion,frequency deviations,and measurement noise.Experimental results demonstrate that the CGPIO-based ADRC outperforms benchmark solutions,including proportional-integral(PI)and proportional-resonant(PR)controllers.
文摘This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.
基金the Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University under Grant No.2018-103the Colleges and University Scientific Research Funds of Gansu Province under Grant No.2017A-026。
文摘The photovoltaic grid-connected inverter is an important interface between the photovoltaic power generation system and power grid.Its high-quality operation is directly related to the output power quality of the power grid.In order to further optimize the control effect of the quasi-Z source grid-connected photovoltaic inverter,a fuzzy proportional complex integral control(PCI)method is proposed for the current internal loop control.This method can eliminate the steady-state error,and has the characteristic of zero steady-state error adjustment for the AC disturbance signal of a specific frequency.The inductance-capacitance-inductance(LCL)filter is adopted in the grid-connected circuit,and the feedback capacitive current is taken as the control variable of the inner loop to form the active damping control method,which can not only effectively suppress the resonance of the LCL circuit,but also significantly inhibit the high-order harmonics in the grid-connected current.Finally,a system simulation model is built in MATLAB/Simulink to verify the superiority and effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant No.51667013)the Science and Technology Project of State Grid Corporation of China(Grant No.52272219000 V).
文摘In the process of grid-connected photovoltaic power generation,there are high requirements for the quality of the power that the inverter breaks into the grid.In this work,to improve the power quality of the grid-connected inverter into the grid,and the output of the system can meet the grid-connected requirements more quickly and accurately,we exhibit an approach toward establishing a mixed logical dynamical(MLD)model where logic variables were introduced to switch dynamics of the single-phase photovoltaic inverters.Besides,based on the model,our recent efforts in studying the finite control set model predictive control(FCS-MPC)and devising the output current full state observer are exciting for several advantages,including effectively avoiding the problem of the mixed-integer quadratic programming(MIQP),lowering the THD value of the output current of the inverter circuit,improving the quality of the power that the inverter breaks into the grid,and realizing the current output and the grid voltage same frequency and phase to meet grid connection requirements.Finally,the effectiveness of the mentioned methods is verified by MATLAB/Simulink simulation.
文摘Global energy demand is growing rapidly owing to industrial growth and urbanization.Alternative energy sources are driven by limited reserves and rapid depletion of conventional energy sources(e.g.,fossil fuels).Solar photovol-taic(PV),as a source of electricity,has grown in popularity over the last few dec-ades because of their clean,noise-free,low-maintenance,and abundant availability of solar energy.There are two types of maximum power point track-ing(MPPT)techniques:classical and evolutionary algorithm-based techniques.Precise and less complex perturb and observe(P&O)and incremental conduc-tance(INC)approaches are extensively employed among classical techniques.This study used afield-programmable gate array(FPGA)-based hardware arrange-ment for a grid-connected photovoltaic(PV)system.The PV panels,MPPT con-trollers,and battery management systems are all components of the proposed system.In the developed hardware prototype,various modes of operation of the grid-connected PV system were examined using P&O and incremental con-ductance MPPT approaches.
文摘This paper presents a techno-economic investigation of an integrated rooftop solar PV system for typical home applications in Oman that can reduce the power consumption from the grid and export excess PV generated power back to the gird.Since renewable energy systems design technically depends on the site,this study selects a typical two-story villa(Home),in a site Al-Hamra,Oman.Temperature is one of the critical parameters in this design as it varies widely over the day and from one season to another in Oman.With the effect of temperature variation,the PV system has designed using system models for the required load of the home.The design process has included two main design constraints,such as the available rooftop space and the grid-connection availability for the selected home.This research also evaluates the economic feasibility of the design system considering the energy export tariff as per the Bulk Supply Tariff(BST)scheme in Oman.The design outcome reveals that the designed PV system can supply the load energy requirement in a year.In addition,the rooftop solar PV system can sell surplus energy back to the grid that generates additional revenue for the owner of the system.The economic performance indices such as payback period,internal rate of return,net present value,and profitability index ensure the financial feasibility of the designed rooftop solar PV system for the selected home.
文摘This paper presents the outdoor performance evaluation of different grid-connected PV technologies installed in Cyprus over a two year period. The PV research and testing facility at the University of Cyprus was commissioned in 2006 to perform continuous measurements of meteorological and PV operational parameters. The test site is appropriately equipped to undertake such evaluations at a very high resolution (1 measurement per second). The perfromance results obtained for the two year evaluation period clearly show how each PV technology has performed under the climatological conditions in Cyprus. Finally the high average energy yield of the fixed plate systems under test, 1580 kWh/kWp and 1609 kWh/kWp during the first and second year of evaluation respectively, also verifies that solar energy is a very promising renewable source of energy for countries with a high solar resource.