Wireless Power Transmission(WPT)has been widely used to replenish energy for various rechargeable devices.The ElectroMagnetic Radiation(EMR)of WPT has attracted great attention of safety concerns.It is possible for th...Wireless Power Transmission(WPT)has been widely used to replenish energy for various rechargeable devices.The ElectroMagnetic Radiation(EMR)of WPT has attracted great attention of safety concerns.It is possible for the malicious attacker to launch the EMR attack by capturing multiple wireless chargers.Little work has studied the EMR attack itself.In this paper,we propose a realistic EMR hazard model,which outputs the diminishing marginal hazard with EMR,with adjustable parameters to the target entities.We formulate three EMR attack models,termed Cumulative EMR Attack(CEA),Overall EMR Attack(OEA)and Unsafety EMR Attack(UEA),and propose the performance guaranteed algorithm of EMR attack for each model.We conduct extensive simulations and field experiments on a testbed.The results show that the proposed algorithms can output the near-optimal solution with much less running time than the optimal algorithms.The results of field experiments in a small testbed show that the utilities of CEAA and OEAA are increased by 70.5%and 12.9%than the comparison algorithms,respectively.Moreover,the number of captured chargers of UEAA is 5.9%less than the comparison algorithms.Our simulations also show the designed algorithms can perform better in a large-scale charging network.展开更多
Wireless energy transmission technology through the transmitter will be converted into microwave,laser or electromagnetic field and other energy carriers to realize the transmission of space,and the receiver will be c...Wireless energy transmission technology through the transmitter will be converted into microwave,laser or electromagnetic field and other energy carriers to realize the transmission of space,and the receiver will be captured back to the energy conversion of electrical energy,the whole process can be completed without physical contact energy transfer.The core mechanism is to build the energy coupling channel of the transmitter-receiver system,and realize the spatial power transmission through electromagnetic field interaction.In the electromagnetic induction coupled transmission system,the industrial frequency alternating current is converted into direct current by rectification and filtering,and then converted into high-frequency alternating current by high-frequency inverter.This current excites the primary side transmitting winding to generate a time-varying magnetic field,and through magnetic coupling in the secondary side receiving winding inductance electromotive force,and ultimately through the high-frequency rectifier and power regulation circuit to the load power supply.The essence of the process is to establish a transceiver double-ended resonant network,through the magnetic field resonance to achieve efficient energy exchange,and its transmission characteristics follow the laws of electromagnetic induction and the circuit resonance principle of double constraints.展开更多
Wireless power transfer(WPT)offers significant advantages,particularly due to its flexibility,enabling diverse applications.However,conventional single-transmitter,single-receiver systems are limited by their sensitiv...Wireless power transfer(WPT)offers significant advantages,particularly due to its flexibility,enabling diverse applications.However,conventional single-transmitter,single-receiver systems are limited by their sensitivity to lateral disturbances,frequency instability,and strict distance constraints.Recently,multiple-transmitter,single-receiver(MTSR)systems have gained attention for their potential to enhance system flexibility and reliability.In this work,we propose an efficient second-order anti-parity‒time(anti-PT)symmetry by introducing two transmitters that simultaneously exchange energy with the external channel.This concept is further extended to third-order anti-PT symmetry for efficient WPT in MTSR systems.By leveraging interference between shared sources,we construct virtual coupling instead of relying on traditional resistive losses.Remarkably,our system maintains frequency stability,broad bandwidth,and robust high-efficiency power transfer even when the resonant frequencies of the transmitter and receiver coils are mismatched.This innovation challenges conventional understanding and opens new directions for WPT technology.展开更多
This study is based on wireless optogenetic technology,utilizing the CRY2/CIB1 photosensitive system to achieve spatiotemporal control of PD-L1 expression.In vitro experiments showed that the surface PD-L1 positivity ...This study is based on wireless optogenetic technology,utilizing the CRY2/CIB1 photosensitive system to achieve spatiotemporal control of PD-L1 expression.In vitro experiments showed that the surface PD-L1 positivity rate of cells increased from 28.6±3.1%to 67.3±5.4%(P<0.001).In animal experiments,the terminal tumor volume in the light exposure group was 450±90 mm3,with a tumor inhibition rate of approximately 49.4%(P<0.001),and the median survival was extended to 32 days(compared to 24 days in the control group,P=0.004).Immunological tests revealed a significant increase in CD8+T cell infiltration(112±18 vs 52±10 cells/HPF,P<0.01),a 30%decrease in the proportion of Tregs(P<0.05),and an increase in the M1/M2 macrophage ratio to 1.8.The results suggest that the wireless optogenetic system can not only precisely regulate PD-L1 but also remodel the tumor immune microenvironment,providing a new approach for precise immunotherapy of GBM.展开更多
Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commo...Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commonly used in various applications such as environmental monitoring,surveillance,healthcare,agriculture,and industrial automation.Despite the benefits of WSN,energy efficiency remains a challenging problem that needs to be addressed.Clustering and routing can be considered effective solutions to accomplish energy efficiency in WSNs.Recent studies have reported that metaheuristic algorithms can be applied to optimize cluster formation and routing decisions.This study introduces a new Northern Goshawk Optimization with boosted coati optimization algorithm for cluster-based routing(NGOBCO-CBR)method for WSN.The proposed NGOBCO-CBR method resolves the hot spot problem,uneven load balancing,and energy consumption in WSN.The NGOBCO-CBR technique comprises two major processes such as NGO based clustering and BCO-based routing.In the initial phase,the NGObased clustering method is designed for cluster head(CH)selection and cluster construction using five input variables such as residual energy(RE),node proximity,load balancing,network average energy,and distance to BS(DBS).Besides,the NGOBCO-CBR technique applies the BCO algorithm for the optimum selection of routes to BS.The experimental results of the NGOBCOCBR technique are studied under different scenarios,and the obtained results showcased the improved efficiency of the NGOBCO-CBR technique over recent approaches in terms of different measures.展开更多
This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different...This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications.展开更多
Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a n...Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions,leveraging a piecewise function to achieve a broad chaotic range()and a high Lyapunov exponent(5.04).Validated through nine benchmarks,including standard randomness tests,Diehard tests,and Shannon entropy(3.883),SPCM demonstrates superior randomness and high sensitivity to initial conditions.Applied to image encryption,SPCM achieves 0.152582 s(39%faster than some techniques)and 433.42 KB/s throughput(134%higher than some techniques),setting new benchmarks for chaotic map-based methods in WSNs.Chaos-based permutation and exclusive or(XOR)diffusion yield near-zero correlation in encrypted images,ensuring strong resistance to Statistical Attacks(SA)and accurate recovery.SPCM also exhibits a strong avalanche effect(bit difference),making it an efficient,secure solution for WSNs in domains like healthcare and smart cities.展开更多
Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caus...Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caused by node loads,which affects network performance.Methods To improve the overall performance and efficiency of wireless sensor networks,a new method for optimizing the wireless sensor network topology based on K-means clustering and firefly algorithms is proposed.The K-means clustering algorithm partitions nodes by minimizing the within-cluster variance,while the firefly algorithm is an optimization algorithm based on swarm intelligence that simulates the flashing interaction between fireflies to guide the search process.The proposed method first introduces the K-means clustering algorithm to cluster nodes and then introduces a firefly algorithm to dynamically adjust the nodes.Results The results showed that the average clustering accuracies in the Wine and Iris data sets were 86.59%and 94.55%,respectively,demonstrating good clustering performance.When calculating the node mortality rate and network load balancing standard deviation,the proposed algorithm showed dead nodes at approximately 50 iterations,with an average load balancing standard deviation of 1.7×10^(4),proving its contribution to extending the network lifespan.Conclusions This demonstrates the superiority of the proposed algorithm in significantly improving the energy efficiency and load balancing of wireless sensor networks to extend the network lifespan.The research results indicate that wireless sensor networks have theoretical and practical significance in fields such as monitoring,healthcare,and agriculture.展开更多
Underwater charging stations allow Autonomous Underwater Vehicles(AUVs)to recharge batteries,extending missions and reducing surface support.However,efficient wireless power transfer requires overcoming alignment chal...Underwater charging stations allow Autonomous Underwater Vehicles(AUVs)to recharge batteries,extending missions and reducing surface support.However,efficient wireless power transfer requires overcoming alignment challenges and environmental variations in conductive seawater.This paper employs Particle Swarm Optimization(PSO)to design coupling coils specifically applied for underwater wireless charging station systems.The establishment of underwater charging stations enables Autonomous Underwater Vehicles(AUVs)to recharge batteries underwater,extending mission duration and reducing reliance on surface-based resupply operations.The proposed charging system is designed to address the unique challenges of the underwater environment,such as alignment disruptions and performance degradation caused by seawater conductivity and environmental fluctuations.Given these distinctive underwater conditions,this study explores coupling coil design comprehensively.COMSOL Multiphysics and MATLAB software were integrated to develop an automated coil evaluation platform,effectively assessing coil coupling under varying misalignment conditions.PSO was employed to optimize coil inner diameters,simulating coupling performance across different misalignment scenarios to achieve high misalignment tolerance.The optimized coils were subsequently implemented in a full-bridge series-series resonant converter and compared with control group coils.Results confirmed the PSO-optimized coils enhanced misalignment resistance,exhibiting a variation of coupling coefficient as low as 4.26%,while the control group coils have a variation of 10.34%.In addition,compared to control group coils,PSO-optimized coils achieved an average efficiency of 71%in air and 67%in seawater,outperforming the control group coils at 66%and 60%,respectively.These findings demonstrate the effectiveness of the proposed PSO-based coil design in improving underwater wireless power transfer reliability and efficiency.展开更多
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu...Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use.展开更多
In wireless communication transmission,image encryption plays a key role in protecting data privacy against unauthorized access.However,conventional encryption methods often face challenges in key space security,parti...In wireless communication transmission,image encryption plays a key role in protecting data privacy against unauthorized access.However,conventional encryption methods often face challenges in key space security,particularly when relying on chaotic sequences,which may exhibit vulnerabilities to brute-force and predictability-based attacks.To address the limitations,this paper presents a robust and efficient encryption scheme that combines iterative hyper-chaotic systems and Convolutional Neural Networks(CNNs).Firstly,a novel two-dimensional iterative hyper-chaotic system is proposed because of its complex dynamic behavior and expanded parameter space,which can enhance the key space complexity and randomness,ensuring resistance against cryptanalysis.Secondly,an innovative CNN architecture is introduced for generating the key stream for the cryptographic system.CNN architecture exhibits excellent nonlinearity and can further optimize the key generation process.To rigorously evaluate the encryption performance,extensive simulation analyses were conducted,including visualization,statistical histogram,information entropy,correlation,differential attack,and resistance.The method has shown a high NPCR(Number of Pixel Change Rate)of 99.642%and a UACI(Unified Average Changing Intensity)value of 33.465%,exhibiting powerful resistance to differential attacks.A series of comprehensive experimental tests have illustrated that the proposed scheme exhibits superior distribution characteristics,which underscores the robustness and efficacy of the image encryption,and helps for communication security.展开更多
This paper studies a cooperative relay transmission system within the framework of Multiple-Input Multiple-Output Radio Frequency/Underwater Optical Wireless Communication(MIMO-RF/UOWC),aiming to establish sea-based h...This paper studies a cooperative relay transmission system within the framework of Multiple-Input Multiple-Output Radio Frequency/Underwater Optical Wireless Communication(MIMO-RF/UOWC),aiming to establish sea-based heterogeneous networks.In this setup,the RF links obey κ-μ fading,while the UOWC links undergo the generalized Gamma fading with the pointing error impairments.The relay operates under an Amplify-and-Forward(AF)protocol.Additionally,the attenuation caused by the Absorption and Scattering(AaS)is considered in UOWC links.The work yields precise results for the Average Channel Capacity(ACC),Outage Probability(OP),and average Bit Error Rate(BER).Furthermore,to reveal deeper insights,bounds on the ACC and asymptotic results for the OP and average BER are derived.The findings highlight the superior performance of MIMO-RF/UOWC AF systems compared to Single-Input-Single-Output(SISO)-RF/UOWC AF systems.Various factors affecting the Diversity Gain(DG)of the MIMO-RF/UOWC AF system include the number of antennas/apertures,fading parameters of both links,and pointing error parameters.Moreover,while an increase in the AaS effect can result in significant attenuation,it does not determine the achievable DG of the proposed MIMO-RF/UOWC AF relaying system.展开更多
An optimizing method for designing the wireless power receiving coil(RC)is proposed in this paper to address issues such as insufficient and fluctuating power supply in the near-infrared capsule robot.An elec-tromagne...An optimizing method for designing the wireless power receiving coil(RC)is proposed in this paper to address issues such as insufficient and fluctuating power supply in the near-infrared capsule robot.An elec-tromagnetic and circuit analysis is conducted to establish the magnetic induction intensity and equivalent circuit models for the wireless power transmission system.Combining these models involves using the number of layers in each dimension as the optimization variable.Constraints are imposed based on the normalized standard deviation of the receiving-end load power and spatial dimensions.At the same time,the optimization objective aims to maximize the average power of the receiving-end load.This process leads to formulating an optimization model for the RC.Finally,three-dimensional RCs with three different sets of parameters are wound,and the receiving-end load power of these coils is experimentally tested under various drive currents.The experimental values of the receiving-end load power exhibit a consistent trend with theoretical values,with experimental values consistently lower than theoretical values.The optimized coil parameters are determined by conducting comparative exper-iments,with a theoretical value of 4.6%for the normalized standard deviation of the receiving-end load power and an average experimental value of 9.6%.The study addressed the power supply issue of near-infrared capsule robots,which is important for early diagnosing and treating gastrointestinal diseases.展开更多
Accurate quantification of exercise interventions and changes in muscle function is essential for personalized health management.Electrical impedance myography(EIM)technology offers an innovative,noninvasive,painless,...Accurate quantification of exercise interventions and changes in muscle function is essential for personalized health management.Electrical impedance myography(EIM)technology offers an innovative,noninvasive,painless,and easy-to-perform solution for muscle health monitoring.However,current EIM platforms face a number of limitations,including large device size,wired connections,and instability of the electrode-skin interface,which limit their applicability for monitoring mus-cle movement.In this study,a miniature wireless EIM platform with a user-friendly smartphone app is proposed and devel-oped.The miniature,wireless,multi-frequency(20 kHz-1 MHz)EIM platform is equipped with flexible microneedle array elec-trodes(MAE).The advantages of MAEs over conventional electrodes were demonstrated by physical field modeling simula-tions and skin-electrode contact impedance comparison tests.The smartphone APP was developed to wirelessly operate the EIM platform,and to transmit and process real-time muscle impedance data.To validate its effectiveness,a seven-day adaptive fatigue training study was conducted,which demonstrated that the EIM platform was able to detect muscle adaptations and serve as a reliable indicator of fatigue.This study presents an innovative approach to applying EIM technology to muscle health monitoring and exercise testing,thereby advancing the development of personalized health management and athletic performance assessment.展开更多
In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in ...In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in each phase of the localization process and fully use the detective information in the network to improve the positioning precision and robustness.In the ranging period,the power attenuation factor is obtained through the wireless channel modeling,and the RSSI value is transformed into distance.In the positioning period,the preferred reference nodes are used to calculate coordinates.In the position optimization period,Taylor expansion and least-squared iterative update algorithms are used to further improve the location precision.In the positioning,the notion of cooperative localization is introduced,in which the located node satisfying certain demands will be upgraded to a reference node so that it can participate in the positioning of other nodes,and improve the coverage and positioning precision.The results show that on the same network conditions,the proposed algorithm in this paper is similar to the Taylor series expansion algorithm based on the actual coordinates,but much higher than the basic least square algorithm,and the positioning precision is improved rapidly with the reduce of the range error.展开更多
Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ...Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained.展开更多
Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resource...Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources. This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead minimization (SOM) problem by considering the limited computation and communication resources and NOMA efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep deterministic policy gradient (MATD3) and convex optimization, namely MATD3-CO, for iterative optimization. Specifically, we first decouple SOM into two sub-problems, i.e., joint sub-channel allocation and task offloading sub-problem, and computation resource allocation sub-problem. Then, we propose MATD3 to optimize the sub-channel allocation and task offloading ratio, and employ the convex optimization to allocate the computation resource with a closed-form expression derived by the Karush-Kuhn-Tucker (KKT) conditions. The solution is obtained by iteratively solving these two sub-problems. The experimental results indicate that the MATD3-CO scheme, when compared to the benchmark schemes, significantly decreases system overhead with respect to both delay and energy consumption.展开更多
The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure t...The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure the reliability of an optimal UCL design,it is essential to account for the three primary scattering regimes:forward scattering(FSC),backward scattering(BSC),and isotropic scattering(ISC)in seawater channels.This study introduces a new photon-tracking model based on a discrete equation,facilitating Monte Carlo Simulation(MCS)to evaluate how different scattering regimes influence received photon distribution.Three distinct Scattering Regime Contribution Weight(SRCW)probability sets were employed,each representing different UCL operational configurations dominated by specific scattering regimes.The proposed modeling approach enables a comprehensive assessment of the temporal characteristics of received optical pulses,channel loss,and time spread-ultimately defining the optimal UCL design parameters.The key findings of this study include:(1)Enhancing the FSC regime dominance leads to a quasi-light waveguide effect over link spans and small Fields of View(FOV)<25°,significantly improving channel performance in Harbor seawater compared to Coastal seawater.(2)A well-designed UCL with a small FOV(<25°)can minimise channel loss and time spread,ensuring high capacity and efficient performance in both Coastal and Harbor seawaters.(3)When BSC and ISC contributions exceed FSC dominance,the received optical pulse undergoes significant temporal broadening,particularly for larger FOV angles(>25°)and extended link spans.(4)The developed novel MCS-based discrete equation provides a simple yet robust model for simulating photon propagation in both homogeneous and inhomogeneous underwater channels.These insights contribute to developing more efficient and reliable UCL designs with military standards by enhancing UWOC system performance over a longer linkspan for a given limited optical power across various underwater environments.展开更多
基金supported by National Natural Science Foundation of China(No.62372249,No.62072254)Jiangsu Graduate Scientific Research Innovation Program(No.KYCX210796).
文摘Wireless Power Transmission(WPT)has been widely used to replenish energy for various rechargeable devices.The ElectroMagnetic Radiation(EMR)of WPT has attracted great attention of safety concerns.It is possible for the malicious attacker to launch the EMR attack by capturing multiple wireless chargers.Little work has studied the EMR attack itself.In this paper,we propose a realistic EMR hazard model,which outputs the diminishing marginal hazard with EMR,with adjustable parameters to the target entities.We formulate three EMR attack models,termed Cumulative EMR Attack(CEA),Overall EMR Attack(OEA)and Unsafety EMR Attack(UEA),and propose the performance guaranteed algorithm of EMR attack for each model.We conduct extensive simulations and field experiments on a testbed.The results show that the proposed algorithms can output the near-optimal solution with much less running time than the optimal algorithms.The results of field experiments in a small testbed show that the utilities of CEAA and OEAA are increased by 70.5%and 12.9%than the comparison algorithms,respectively.Moreover,the number of captured chargers of UEAA is 5.9%less than the comparison algorithms.Our simulations also show the designed algorithms can perform better in a large-scale charging network.
文摘Wireless energy transmission technology through the transmitter will be converted into microwave,laser or electromagnetic field and other energy carriers to realize the transmission of space,and the receiver will be captured back to the energy conversion of electrical energy,the whole process can be completed without physical contact energy transfer.The core mechanism is to build the energy coupling channel of the transmitter-receiver system,and realize the spatial power transmission through electromagnetic field interaction.In the electromagnetic induction coupled transmission system,the industrial frequency alternating current is converted into direct current by rectification and filtering,and then converted into high-frequency alternating current by high-frequency inverter.This current excites the primary side transmitting winding to generate a time-varying magnetic field,and through magnetic coupling in the secondary side receiving winding inductance electromotive force,and ultimately through the high-frequency rectifier and power regulation circuit to the load power supply.The essence of the process is to establish a transceiver double-ended resonant network,through the magnetic field resonance to achieve efficient energy exchange,and its transmission characteristics follow the laws of electromagnetic induction and the circuit resonance principle of double constraints.
基金supported by the National Key R&D Program of China(Nos.2021YFA1400602 and 2023YFA1407600)the National Natural Science Foundation of China(Nos.12374294 and 52477014)the Chenguang Program of Shanghai(No.21CGA22).
文摘Wireless power transfer(WPT)offers significant advantages,particularly due to its flexibility,enabling diverse applications.However,conventional single-transmitter,single-receiver systems are limited by their sensitivity to lateral disturbances,frequency instability,and strict distance constraints.Recently,multiple-transmitter,single-receiver(MTSR)systems have gained attention for their potential to enhance system flexibility and reliability.In this work,we propose an efficient second-order anti-parity‒time(anti-PT)symmetry by introducing two transmitters that simultaneously exchange energy with the external channel.This concept is further extended to third-order anti-PT symmetry for efficient WPT in MTSR systems.By leveraging interference between shared sources,we construct virtual coupling instead of relying on traditional resistive losses.Remarkably,our system maintains frequency stability,broad bandwidth,and robust high-efficiency power transfer even when the resonant frequencies of the transmitter and receiver coils are mismatched.This innovation challenges conventional understanding and opens new directions for WPT technology.
文摘This study is based on wireless optogenetic technology,utilizing the CRY2/CIB1 photosensitive system to achieve spatiotemporal control of PD-L1 expression.In vitro experiments showed that the surface PD-L1 positivity rate of cells increased from 28.6±3.1%to 67.3±5.4%(P<0.001).In animal experiments,the terminal tumor volume in the light exposure group was 450±90 mm3,with a tumor inhibition rate of approximately 49.4%(P<0.001),and the median survival was extended to 32 days(compared to 24 days in the control group,P=0.004).Immunological tests revealed a significant increase in CD8+T cell infiltration(112±18 vs 52±10 cells/HPF,P<0.01),a 30%decrease in the proportion of Tregs(P<0.05),and an increase in the M1/M2 macrophage ratio to 1.8.The results suggest that the wireless optogenetic system can not only precisely regulate PD-L1 but also remodel the tumor immune microenvironment,providing a new approach for precise immunotherapy of GBM.
文摘Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commonly used in various applications such as environmental monitoring,surveillance,healthcare,agriculture,and industrial automation.Despite the benefits of WSN,energy efficiency remains a challenging problem that needs to be addressed.Clustering and routing can be considered effective solutions to accomplish energy efficiency in WSNs.Recent studies have reported that metaheuristic algorithms can be applied to optimize cluster formation and routing decisions.This study introduces a new Northern Goshawk Optimization with boosted coati optimization algorithm for cluster-based routing(NGOBCO-CBR)method for WSN.The proposed NGOBCO-CBR method resolves the hot spot problem,uneven load balancing,and energy consumption in WSN.The NGOBCO-CBR technique comprises two major processes such as NGO based clustering and BCO-based routing.In the initial phase,the NGObased clustering method is designed for cluster head(CH)selection and cluster construction using five input variables such as residual energy(RE),node proximity,load balancing,network average energy,and distance to BS(DBS).Besides,the NGOBCO-CBR technique applies the BCO algorithm for the optimum selection of routes to BS.The experimental results of the NGOBCOCBR technique are studied under different scenarios,and the obtained results showcased the improved efficiency of the NGOBCO-CBR technique over recent approaches in terms of different measures.
基金funded by Universiti Putra Malaysia under a Geran Putra Inisiatif(GPI)research grant with reference to GP-GPI/2023/9762100.
文摘This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government Ministry of Science and ICT(MIST)(RS-2022-00165225).
文摘Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions,leveraging a piecewise function to achieve a broad chaotic range()and a high Lyapunov exponent(5.04).Validated through nine benchmarks,including standard randomness tests,Diehard tests,and Shannon entropy(3.883),SPCM demonstrates superior randomness and high sensitivity to initial conditions.Applied to image encryption,SPCM achieves 0.152582 s(39%faster than some techniques)and 433.42 KB/s throughput(134%higher than some techniques),setting new benchmarks for chaotic map-based methods in WSNs.Chaos-based permutation and exclusive or(XOR)diffusion yield near-zero correlation in encrypted images,ensuring strong resistance to Statistical Attacks(SA)and accurate recovery.SPCM also exhibits a strong avalanche effect(bit difference),making it an efficient,secure solution for WSNs in domains like healthcare and smart cities.
基金Supported by 2021 Zhanjiang University of Science and Technology"Brand Enhancement Plan"Project:Network Series Course Teaching Team(PPJH202102JXTD)2022 Zhanjiang University of Science and Technology"Brand Enhancement Plan"Project:Network Engineering(PPJHKCSZ-2022301)+1 种基金2023 Zhanjiang Science and Technology Bureau Project:Design and Simulation of Zhanjiang Mangrove Wetland Monitoring Network System(2023B01017)2022 Zhanjiang University of Science and Technology Quality Engineering Project:Audiovisual Language Teaching and Research Office(ZLGC202203).
文摘Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caused by node loads,which affects network performance.Methods To improve the overall performance and efficiency of wireless sensor networks,a new method for optimizing the wireless sensor network topology based on K-means clustering and firefly algorithms is proposed.The K-means clustering algorithm partitions nodes by minimizing the within-cluster variance,while the firefly algorithm is an optimization algorithm based on swarm intelligence that simulates the flashing interaction between fireflies to guide the search process.The proposed method first introduces the K-means clustering algorithm to cluster nodes and then introduces a firefly algorithm to dynamically adjust the nodes.Results The results showed that the average clustering accuracies in the Wine and Iris data sets were 86.59%and 94.55%,respectively,demonstrating good clustering performance.When calculating the node mortality rate and network load balancing standard deviation,the proposed algorithm showed dead nodes at approximately 50 iterations,with an average load balancing standard deviation of 1.7×10^(4),proving its contribution to extending the network lifespan.Conclusions This demonstrates the superiority of the proposed algorithm in significantly improving the energy efficiency and load balancing of wireless sensor networks to extend the network lifespan.The research results indicate that wireless sensor networks have theoretical and practical significance in fields such as monitoring,healthcare,and agriculture.
基金supported by the National Science and Technology Council(NSTC),Taiwan[Project code MOST 110-2222-E-019-005-MY3].
文摘Underwater charging stations allow Autonomous Underwater Vehicles(AUVs)to recharge batteries,extending missions and reducing surface support.However,efficient wireless power transfer requires overcoming alignment challenges and environmental variations in conductive seawater.This paper employs Particle Swarm Optimization(PSO)to design coupling coils specifically applied for underwater wireless charging station systems.The establishment of underwater charging stations enables Autonomous Underwater Vehicles(AUVs)to recharge batteries underwater,extending mission duration and reducing reliance on surface-based resupply operations.The proposed charging system is designed to address the unique challenges of the underwater environment,such as alignment disruptions and performance degradation caused by seawater conductivity and environmental fluctuations.Given these distinctive underwater conditions,this study explores coupling coil design comprehensively.COMSOL Multiphysics and MATLAB software were integrated to develop an automated coil evaluation platform,effectively assessing coil coupling under varying misalignment conditions.PSO was employed to optimize coil inner diameters,simulating coupling performance across different misalignment scenarios to achieve high misalignment tolerance.The optimized coils were subsequently implemented in a full-bridge series-series resonant converter and compared with control group coils.Results confirmed the PSO-optimized coils enhanced misalignment resistance,exhibiting a variation of coupling coefficient as low as 4.26%,while the control group coils have a variation of 10.34%.In addition,compared to control group coils,PSO-optimized coils achieved an average efficiency of 71%in air and 67%in seawater,outperforming the control group coils at 66%and 60%,respectively.These findings demonstrate the effectiveness of the proposed PSO-based coil design in improving underwater wireless power transfer reliability and efficiency.
基金funded by Deanship of Graduate studies and Scientific Research at Jouf University under grant No.(DGSSR-2023-2-02038).
文摘Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use.
基金supported in part by the National Key Research and Development Program of China(No.2021YFB3101500)the Fundamental Research Funds for the Central Universities(No.2023RC69).
文摘In wireless communication transmission,image encryption plays a key role in protecting data privacy against unauthorized access.However,conventional encryption methods often face challenges in key space security,particularly when relying on chaotic sequences,which may exhibit vulnerabilities to brute-force and predictability-based attacks.To address the limitations,this paper presents a robust and efficient encryption scheme that combines iterative hyper-chaotic systems and Convolutional Neural Networks(CNNs).Firstly,a novel two-dimensional iterative hyper-chaotic system is proposed because of its complex dynamic behavior and expanded parameter space,which can enhance the key space complexity and randomness,ensuring resistance against cryptanalysis.Secondly,an innovative CNN architecture is introduced for generating the key stream for the cryptographic system.CNN architecture exhibits excellent nonlinearity and can further optimize the key generation process.To rigorously evaluate the encryption performance,extensive simulation analyses were conducted,including visualization,statistical histogram,information entropy,correlation,differential attack,and resistance.The method has shown a high NPCR(Number of Pixel Change Rate)of 99.642%and a UACI(Unified Average Changing Intensity)value of 33.465%,exhibiting powerful resistance to differential attacks.A series of comprehensive experimental tests have illustrated that the proposed scheme exhibits superior distribution characteristics,which underscores the robustness and efficacy of the image encryption,and helps for communication security.
基金supported in part by the National Natural Science Foundation of China under Grant 62301272the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications under Grants NY223023 and NY223027.
文摘This paper studies a cooperative relay transmission system within the framework of Multiple-Input Multiple-Output Radio Frequency/Underwater Optical Wireless Communication(MIMO-RF/UOWC),aiming to establish sea-based heterogeneous networks.In this setup,the RF links obey κ-μ fading,while the UOWC links undergo the generalized Gamma fading with the pointing error impairments.The relay operates under an Amplify-and-Forward(AF)protocol.Additionally,the attenuation caused by the Absorption and Scattering(AaS)is considered in UOWC links.The work yields precise results for the Average Channel Capacity(ACC),Outage Probability(OP),and average Bit Error Rate(BER).Furthermore,to reveal deeper insights,bounds on the ACC and asymptotic results for the OP and average BER are derived.The findings highlight the superior performance of MIMO-RF/UOWC AF systems compared to Single-Input-Single-Output(SISO)-RF/UOWC AF systems.Various factors affecting the Diversity Gain(DG)of the MIMO-RF/UOWC AF system include the number of antennas/apertures,fading parameters of both links,and pointing error parameters.Moreover,while an increase in the AaS effect can result in significant attenuation,it does not determine the achievable DG of the proposed MIMO-RF/UOWC AF relaying system.
基金the Project of the Science and Technology Commission of Shanghai Municipality(No.20142201300)the National Facility for Translational Medicine(Shanghai)Open Project Foundation(No.TMSK-2021-302)the China Postdoctoral Science Foundation(No.2023M732267)。
文摘An optimizing method for designing the wireless power receiving coil(RC)is proposed in this paper to address issues such as insufficient and fluctuating power supply in the near-infrared capsule robot.An elec-tromagnetic and circuit analysis is conducted to establish the magnetic induction intensity and equivalent circuit models for the wireless power transmission system.Combining these models involves using the number of layers in each dimension as the optimization variable.Constraints are imposed based on the normalized standard deviation of the receiving-end load power and spatial dimensions.At the same time,the optimization objective aims to maximize the average power of the receiving-end load.This process leads to formulating an optimization model for the RC.Finally,three-dimensional RCs with three different sets of parameters are wound,and the receiving-end load power of these coils is experimentally tested under various drive currents.The experimental values of the receiving-end load power exhibit a consistent trend with theoretical values,with experimental values consistently lower than theoretical values.The optimized coil parameters are determined by conducting comparative exper-iments,with a theoretical value of 4.6%for the normalized standard deviation of the receiving-end load power and an average experimental value of 9.6%.The study addressed the power supply issue of near-infrared capsule robots,which is important for early diagnosing and treating gastrointestinal diseases.
文摘Accurate quantification of exercise interventions and changes in muscle function is essential for personalized health management.Electrical impedance myography(EIM)technology offers an innovative,noninvasive,painless,and easy-to-perform solution for muscle health monitoring.However,current EIM platforms face a number of limitations,including large device size,wired connections,and instability of the electrode-skin interface,which limit their applicability for monitoring mus-cle movement.In this study,a miniature wireless EIM platform with a user-friendly smartphone app is proposed and devel-oped.The miniature,wireless,multi-frequency(20 kHz-1 MHz)EIM platform is equipped with flexible microneedle array elec-trodes(MAE).The advantages of MAEs over conventional electrodes were demonstrated by physical field modeling simula-tions and skin-electrode contact impedance comparison tests.The smartphone APP was developed to wirelessly operate the EIM platform,and to transmit and process real-time muscle impedance data.To validate its effectiveness,a seven-day adaptive fatigue training study was conducted,which demonstrated that the EIM platform was able to detect muscle adaptations and serve as a reliable indicator of fatigue.This study presents an innovative approach to applying EIM technology to muscle health monitoring and exercise testing,thereby advancing the development of personalized health management and athletic performance assessment.
基金National Natural Science Foundation of China,grant number 62205120,funded this research.
文摘In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in each phase of the localization process and fully use the detective information in the network to improve the positioning precision and robustness.In the ranging period,the power attenuation factor is obtained through the wireless channel modeling,and the RSSI value is transformed into distance.In the positioning period,the preferred reference nodes are used to calculate coordinates.In the position optimization period,Taylor expansion and least-squared iterative update algorithms are used to further improve the location precision.In the positioning,the notion of cooperative localization is introduced,in which the located node satisfying certain demands will be upgraded to a reference node so that it can participate in the positioning of other nodes,and improve the coverage and positioning precision.The results show that on the same network conditions,the proposed algorithm in this paper is similar to the Taylor series expansion algorithm based on the actual coordinates,but much higher than the basic least square algorithm,and the positioning precision is improved rapidly with the reduce of the range error.
基金supported by the National Natural Science Foundation of China under Grant Nos.U21A20464,62066005Innovation Project of Guangxi Graduate Education under Grant No.YCSW2024313.
文摘Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained.
基金supported by the National Natural Science Foundation of China under Grants 92267108,62173322 and 61821005the Science and Technology Program of Liaoning Province under Grants 2023JH3/10200004 and 2022JH25/10100005.
文摘Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources. This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead minimization (SOM) problem by considering the limited computation and communication resources and NOMA efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep deterministic policy gradient (MATD3) and convex optimization, namely MATD3-CO, for iterative optimization. Specifically, we first decouple SOM into two sub-problems, i.e., joint sub-channel allocation and task offloading sub-problem, and computation resource allocation sub-problem. Then, we propose MATD3 to optimize the sub-channel allocation and task offloading ratio, and employ the convex optimization to allocate the computation resource with a closed-form expression derived by the Karush-Kuhn-Tucker (KKT) conditions. The solution is obtained by iteratively solving these two sub-problems. The experimental results indicate that the MATD3-CO scheme, when compared to the benchmark schemes, significantly decreases system overhead with respect to both delay and energy consumption.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia,has funded this project under Grant No.(KEP-PhD:72-130-1443).
文摘The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure the reliability of an optimal UCL design,it is essential to account for the three primary scattering regimes:forward scattering(FSC),backward scattering(BSC),and isotropic scattering(ISC)in seawater channels.This study introduces a new photon-tracking model based on a discrete equation,facilitating Monte Carlo Simulation(MCS)to evaluate how different scattering regimes influence received photon distribution.Three distinct Scattering Regime Contribution Weight(SRCW)probability sets were employed,each representing different UCL operational configurations dominated by specific scattering regimes.The proposed modeling approach enables a comprehensive assessment of the temporal characteristics of received optical pulses,channel loss,and time spread-ultimately defining the optimal UCL design parameters.The key findings of this study include:(1)Enhancing the FSC regime dominance leads to a quasi-light waveguide effect over link spans and small Fields of View(FOV)<25°,significantly improving channel performance in Harbor seawater compared to Coastal seawater.(2)A well-designed UCL with a small FOV(<25°)can minimise channel loss and time spread,ensuring high capacity and efficient performance in both Coastal and Harbor seawaters.(3)When BSC and ISC contributions exceed FSC dominance,the received optical pulse undergoes significant temporal broadening,particularly for larger FOV angles(>25°)and extended link spans.(4)The developed novel MCS-based discrete equation provides a simple yet robust model for simulating photon propagation in both homogeneous and inhomogeneous underwater channels.These insights contribute to developing more efficient and reliable UCL designs with military standards by enhancing UWOC system performance over a longer linkspan for a given limited optical power across various underwater environments.