期刊文献+
共找到10,451篇文章
< 1 2 250 >
每页显示 20 50 100
一种基于改进PSO算法的新型电力系统负荷波动柔性控制
1
作者 王超 《自动化技术与应用》 2026年第1期157-160,共4页
由于当下电力需求的季节性、时段性等特点,导致电力需求在时间上存在差异,使得供需不匹配,造成供需矛盾。为此,柔性负荷调节成为解决供需矛盾的主要手段之一。为提高电力系统的稳定性和可靠性,研究一种基于改进PSO算法的新型电力系统负... 由于当下电力需求的季节性、时段性等特点,导致电力需求在时间上存在差异,使得供需不匹配,造成供需矛盾。为此,柔性负荷调节成为解决供需矛盾的主要手段之一。为提高电力系统的稳定性和可靠性,研究一种基于改进PSO算法的新型电力系统负荷波动柔性控制方法。研究分为两个部分,前一部分将电压偏离量作为稳定性目标,将控制成本作为经济性目标,由二者构建新型电力系统负荷波动柔性控制多目标函数;后一部分利用细菌觅食优化算法改进PSO算法,利用改进PSO算法对多目标函数进行求解,得出新型电力系统负荷波动柔性控制方案。结果表明,控制前新型电力系统的负荷在[85 MW~400 MW]之间波动,用所研究方法控制后,负荷波动范围在[218 MW~258 MW]之间,二者相比,波动范围缩小,由此证明了所研究方法的控制性能佳。 展开更多
关键词 改进pso算法 新型电力系统 负荷波动 柔性控制方法 细菌觅食优化算法
在线阅读 下载PDF
基于改进PSO的煤矿井下机车运输路径优化调度
2
作者 刘登科 张宏伟 《现代电子技术》 北大核心 2026年第2期142-148,共7页
煤矿井下机车作为煤矿井下运输物料矸石工作的主要工具,其运输调度工作影响着煤矿企业生产效率,而传统调度方式主要以人工操作为主,运输效率较低。为提升井下机车运输效率,针对现有的煤矿井下辅助运输调度工作特点与实际调度需求,提出... 煤矿井下机车作为煤矿井下运输物料矸石工作的主要工具,其运输调度工作影响着煤矿企业生产效率,而传统调度方式主要以人工操作为主,运输效率较低。为提升井下机车运输效率,针对现有的煤矿井下辅助运输调度工作特点与实际调度需求,提出一种基于改进粒子群优化(PSO)算法的机车最优调度路径求解方案。该方案以运输原则为约束,构建以最小总运输距离为优化目标的调度模型,为井下机车调度工作提供理论支撑。再对基于改进粒子群优化算法的调度算法进一步优化,通过引入遗传算法(GA)中的交叉变异操作来增强空间粒子的多样性与寻优能力,最终得到最优调度路径。通过Matlab 2022b软件搭建了仿真平台,以首山一矿井下运输矸石实际生产数据为背景,对该算法进行了仿真实验。实验结果表明,所提出的智能井下机车调度算法规划的运输路径更具合理性,不仅提高了机车资源利用率,还显著提升了井下辅助运输作业的整体效率。 展开更多
关键词 井下辅助运输 机车调度 数学模型 改进pso算法 GA 最短路径
在线阅读 下载PDF
融合敏感度-机理的MOPSO铣削工艺参数增效优化
3
作者 黄晓燕 赵家康 +2 位作者 马俊燕 廖小平 鲁娟 《制造技术与机床》 北大核心 2026年第1期114-121,153,共9页
现有加工过程的多目标优化方法未能有效利用工艺参数的敏感度与机理信息,易陷入局部最优且解集多样性不足。为此,文章提出基于敏感度-机理信息驱动的多目标粒子群优化(sensitivity-mechanism integrated multi-objective particle swarm... 现有加工过程的多目标优化方法未能有效利用工艺参数的敏感度与机理信息,易陷入局部最优且解集多样性不足。为此,文章提出基于敏感度-机理信息驱动的多目标粒子群优化(sensitivity-mechanism integrated multi-objective particle swarm optimization, SMG-MOPSO)算法回归模型与经验公式,以构建表面粗糙度Ra、切削力F_(c)和材料去除率(material removal rate,MRR)预测模型;通过敏感度函数、主效应与交互作用分析,揭示工艺参数对优化目标的影响规律;在此基础上,针对MOPSO设计三项机制,即基于敏感度函数与机理趋势的自适应步长调节、融合敏感度导向与机理修正的速度更新、引入机理一致性的解集维护,以增强解集效果。铣削试验验证表明,所提方法在满足Ra与F_(c)约束的前提下,MRR提高24.40%,验证了该方法的有效性及工程应用潜力。 展开更多
关键词 铣削加工 粒子群优化 自适应机制 机理信息 敏感度函数
在线阅读 下载PDF
基于PSO-BP神经网络的硅基光子器件光损耗异常监测系统
4
作者 闵月淇 谢亮 《现代电子技术》 北大核心 2026年第2期49-53,共5页
硅基光子器件的光损耗易受多种运行参数影响,导致其光损耗异常监测存在偏差或遗漏。为全面考虑多种运行参数的影响,实现对其光损耗异常的全面精准监测,设计一种基于PSO-BP神经网络的硅基光子器件光损耗异常监测系统。采用系统的数据采... 硅基光子器件的光损耗易受多种运行参数影响,导致其光损耗异常监测存在偏差或遗漏。为全面考虑多种运行参数的影响,实现对其光损耗异常的全面精准监测,设计一种基于PSO-BP神经网络的硅基光子器件光损耗异常监测系统。采用系统的数据采集模块实时采集硅基光子器件的波长、温度等运行参数,再通过数据预处理模块对各参数进行处理,并输入以PSO-BP神经网络为核心的光损耗检测模块,从而获得各种运行参数下的光损耗检测值。异常监测预警模块将所得光损耗检测值与设定阈值进行对比,判断光损耗是否异常,若异常则发出预警。用户交互模块呈现异常监测及预警信息,完成硅基光子器件光损耗异常监测。结果表明,所设计系统可针对不同波长、温度、波导长度及输出光功率等运行参数,实现对硅基光子器件光损耗异常的全面监测,并对各种异常光损耗场景进行有效预警。 展开更多
关键词 硅基光子器件 光损耗 异常监测 pso-BP神经网络 异常预警 波导长度
在线阅读 下载PDF
基于PSO-BP神经网络的热电厂负荷预测策略研究
5
作者 胡旭 米欣 曹琦 《科技创新与应用》 2026年第1期32-35,共4页
目前能源的高效利用和绿色发展受到学者们广泛的关注。该文针对某热电厂能源管理系统产生的大量历史数据,采用大数据分析的方法计算出数据之间的关联系数,以判断数据间的关联状况。建立PSO-BP神经网络模型对某热电厂未来24 h的热负荷进... 目前能源的高效利用和绿色发展受到学者们广泛的关注。该文针对某热电厂能源管理系统产生的大量历史数据,采用大数据分析的方法计算出数据之间的关联系数,以判断数据间的关联状况。建立PSO-BP神经网络模型对某热电厂未来24 h的热负荷进行预测,以便为热电厂更好地提供生产、运营、管理决策服务等。PSO-BP神经网络模型是将粒子群算法与BP算法融合产生的,不仅能够提高BP神经网络的预测精度,而且可以有效地解决BP神经网络算法学习速度慢及易陷入局部极小值、稳定性差等问题。 展开更多
关键词 大数据分析 用热特性 预测模型 pso-BP神经网络 预测精度
在线阅读 下载PDF
基于特征优选与IPSO-LSTM的变压器故障诊断
6
作者 胡俊泽 杨耿煌 +1 位作者 耿丽清 刘新宇 《电气传动》 2026年第1期89-96,共8页
针对变压器故障诊断精度差、准确率低的问题,提出一种基于数据特征优选与改进粒子群优化算法的长短期记忆网络(IPSO-LSTM)的变压器故障诊断方法。首先对原始数据集进行预处理,使用合成少数类样本过采样技术(SMOTE)扩充数据数量;其次利... 针对变压器故障诊断精度差、准确率低的问题,提出一种基于数据特征优选与改进粒子群优化算法的长短期记忆网络(IPSO-LSTM)的变压器故障诊断方法。首先对原始数据集进行预处理,使用合成少数类样本过采样技术(SMOTE)扩充数据数量;其次利用特征比值法扩充特征维数至20维,使用随机森林(RF)算法判断特征重要程度进行特征优选,降低过拟合风险;然后引入自适应惯性权重对PSO算法进行改进,利用改进后的PSO算法来优化LSTM最优超参数;最后输入特征优选后的数据进行变压器故障诊断。结果表明所构建的故障诊断模型诊断精度为91.6%。该优化模型与LSTM,HBA-LSTM和PSO-LSTM诊断模型相比,准确率分别提高了10.12%,5.95%,3.57%,证明IPSO-LSTM诊断模型有更高的诊断准确率,在变压器故障诊断领域有一定的实际意义。 展开更多
关键词 变压器故障诊断 特征优选 随机森林 长短期记忆网络 粒子群优化算法
在线阅读 下载PDF
基于PSO-SVR模型和分级变量选择的思茅松地上生物量估测研究
7
作者 于志博 陈大鹏 罗洪斌 《西南林业大学学报(自然科学)》 北大核心 2026年第1期141-148,共8页
基于哨兵2(Sentinel–2A)遥感数据,利用粒子群优化算法(PSO)优化支持向量回归(SVR)模型的惩罚参数(C)和核函数参数(γ),提高AGB反演精度。在变量选择过程中,采用分级变量选择方法,按照皮尔逊相关系数的绝对值排序,并构建不同变量组合的... 基于哨兵2(Sentinel–2A)遥感数据,利用粒子群优化算法(PSO)优化支持向量回归(SVR)模型的惩罚参数(C)和核函数参数(γ),提高AGB反演精度。在变量选择过程中,采用分级变量选择方法,按照皮尔逊相关系数的绝对值排序,并构建不同变量组合的SVR和PSO–SVR模型,探讨特征选择对模型性能的影响。结果表明:通过五折交叉验证评估模型的泛化能力后,选择前10%分级变量的PSO–SVR模型表现最佳,其R^(2)为0.989,RMSE为4.623 t/hm^(2),显著优于传统SVR模型(R^(2)=0.813,RMSE=18.697 t/hm^(2))。随着变量数量增加,模型精度下降,所有变量参与建模时,PSO–SVR的R^(2)降至0.311,RMSE增至35.831 t/hm^(2),表明冗余变量的引入会削弱模型的预测能力。综上所述,PSO优化SVR参数的有效性得到了验证,合理的变量筛选与优化算法结合可显著提高AGB估测精度。 展开更多
关键词 粒子群优化算法 支持向量回归 地上生物量 思茅松 机器学习
在线阅读 下载PDF
基于改进PSO-OTSU的图像分割算法研究
8
作者 吕途 陈一言 +1 位作者 段豪 韩伟 《技术与市场》 2026年第1期13-17,共5页
为解决传统阈值分割方法(最大类间方差法)在图像阈值分割中存在空间和时间复杂度高、实时性差的问题,提出了一种改进惯性权重的粒子群优化(particle swarm optimization,PSO)算法与传统最大类间方差法(OTSU)相结合的图像阈值分割算法。... 为解决传统阈值分割方法(最大类间方差法)在图像阈值分割中存在空间和时间复杂度高、实时性差的问题,提出了一种改进惯性权重的粒子群优化(particle swarm optimization,PSO)算法与传统最大类间方差法(OTSU)相结合的图像阈值分割算法。为了证明提出的方法对图像分割的效果相较于传统OTSU更优,通过MATLAB软件平台搭建仿真模型,将该算法和传统算法对同一组图片进行单阈值和二阈值阈值分割,将二者的分割结果(运行时间、峰值信噪比、平均结构相似性指数)进行对比。结果表明:该方法相较于传统阈值分割方法阈值分割的运行时间更短、峰值信噪比(peak signal-to-noise ratio,PSNR)更大和平均结构相似性指数(mean structural similarity index,MSSIM)值更接近于1。可见,此本文提出的算法相较于传统算法能够更快更优地对图像进行分割,有效解决了传统方法空间和时间复杂度高、实时性差的问题。 展开更多
关键词 最大类间方差法(OTSU) 改进惯性权重 粒子群优化(pso)算法 峰值信噪比(PSNR) 平均结构相似性指数(MSSIM)
在线阅读 下载PDF
基于PSO-BP神经网络矿井涌水量预测模型
9
作者 李启兴 张宇 +1 位作者 乔秀杰 闫国成 《煤》 2026年第1期94-99,共6页
矿井涌水量的准确预测对矿山建设及煤层安全高效回采意义重大。文章以某华北型煤田煤矿为研究对象,该矿主要受石炭-二叠系砂岩裂隙含水层影响。研究采用时间序列分析方法、BP和PSO-BP神经网络模型构建多模型预测体系。通过聚类分析发现... 矿井涌水量的准确预测对矿山建设及煤层安全高效回采意义重大。文章以某华北型煤田煤矿为研究对象,该矿主要受石炭-二叠系砂岩裂隙含水层影响。研究采用时间序列分析方法、BP和PSO-BP神经网络模型构建多模型预测体系。通过聚类分析发现,该矿涌水量受季节性影响小,进而将其视为整体研究。时间序列模型预测结果表明,该模型有一定预测能力,但存在弊端。引入PSO-BP方法优化模型,对比BP神经网络等模型,结果显示PSO-BP神经网络预测模型准确性最高(R^(2)=0.9924,RMSE值为0.08219),为矿井涌水量精准预测、灾害预警及煤矿安全生产提供了有效方法和理论支撑。 展开更多
关键词 涌水量预测 时间序列模型 pso-BP
在线阅读 下载PDF
基于PSO-SVR算法的水泥窑SCR催化剂磨损率预测
10
作者 印心如 李明月 吴越 《价值工程》 2026年第1期10-12,共3页
为精准预测水泥窑SCR催化剂磨损率,提出PSO-SVR预测方法,即借助粒子群算法优化支持向量回归机的参数。算法对比结果显示,PSO-SVR模型预测效果优于SVR模型。PSO-SVR模型结果误差更小、预测精度更高,能有效预测水泥窑烟气SCR脱硝催化剂磨... 为精准预测水泥窑SCR催化剂磨损率,提出PSO-SVR预测方法,即借助粒子群算法优化支持向量回归机的参数。算法对比结果显示,PSO-SVR模型预测效果优于SVR模型。PSO-SVR模型结果误差更小、预测精度更高,能有效预测水泥窑烟气SCR脱硝催化剂磨损特性。 展开更多
关键词 水泥窑SCR pso-SVR算法 磨损率
在线阅读 下载PDF
基于IPSO算法优化SVM的睡眠分期模型 被引量:2
11
作者 张宇 白国长 王成 《传感器与微系统》 北大核心 2025年第8期138-142,共5页
针对目前睡眠分期中存在的依赖人工判别效率低、睡眠分期精度不高等问题,提出了一种基于改进粒子群优化算法优化支持向量机(IPSO-SVM)的睡眠分期模型,通过脑电(EEG)信号对睡眠过程进行准确分期。首先,对EEG信号进行滤波、分段等预处理;... 针对目前睡眠分期中存在的依赖人工判别效率低、睡眠分期精度不高等问题,提出了一种基于改进粒子群优化算法优化支持向量机(IPSO-SVM)的睡眠分期模型,通过脑电(EEG)信号对睡眠过程进行准确分期。首先,对EEG信号进行滤波、分段等预处理;其次,提取EEG信号的时域、频域、非线性特征;最后,通过IPSO-SVM算法建立睡眠分期模型。该模型在PSO算法中引入模拟退火算法来提升算法的搜索能力,同时引入惯性权重自适应变异使粒子能够跳出局部最优解。使用ISRUC-Sleep数据集的前6位受试者数据对IPSO-SVM分类模型进行验证。结果表明:IPSO-SVM模型的平均睡眠分期准确率为92.34%,K系数为0.88,改进的睡眠分期模型具有较高的准确率和系统稳定性。 展开更多
关键词 粒子群优化算法 支持向量机 模拟退火 自适应变异
在线阅读 下载PDF
基于PSO-XGBoost的煤层断层智能识别方法研究 被引量:3
12
作者 林朋 孙成 +2 位作者 任珂 刘育林 李阳 《矿业科学学报》 北大核心 2025年第1期57-69,共13页
为进一步提高地下断层识别准确率和解释效率,使用极限梯度提升树(XGBoost)机器学习算法对煤层断层进行智能识别,并结合粒子群算法(PSO)优化模型相关参数,构建基于PSO-XGBoost的断层构造识别模型。建立正演模型对PSO-XGBoost模型进行检验... 为进一步提高地下断层识别准确率和解释效率,使用极限梯度提升树(XGBoost)机器学习算法对煤层断层进行智能识别,并结合粒子群算法(PSO)优化模型相关参数,构建基于PSO-XGBoost的断层构造识别模型。建立正演模型对PSO-XGBoost模型进行检验,并基于滇东矿区采集的实际数据对比分析PSO-XGBoost模型与PSO-RF、PSO-SVM模型的分类预测性能,选择准确率和对数损失值作为评价分类器预测模型的主要指标评价各模型的准确度。结果表明,基于PSO-XGBoost的模型在断层构造识别中展现出较高的准确率和更好的稳定性。 展开更多
关键词 断层识别 XGBoost pso 机器学习 参数优化
在线阅读 下载PDF
基于AW-CPSO-Fuzzy-PID的茶鲜叶分级输送速度控制器研究 被引量:2
13
作者 胡永光 靳筱天 +2 位作者 张志 鹿永宗 潘庆民 《农业机械学报》 北大核心 2025年第4期275-283,共9页
为解决基于机器视觉的茶鲜叶分级输送速度控制精度低的问题,本文设计一种引入自适应权重与Circle混沌映射的PSO优化模糊PID控制器(AW-CPSO-Fuzzy-PID),并开展基于改进模糊PID的茶鲜叶分级输送速度控制。在茶鲜叶输送传动系统作业过程中... 为解决基于机器视觉的茶鲜叶分级输送速度控制精度低的问题,本文设计一种引入自适应权重与Circle混沌映射的PSO优化模糊PID控制器(AW-CPSO-Fuzzy-PID),并开展基于改进模糊PID的茶鲜叶分级输送速度控制。在茶鲜叶输送传动系统作业过程中,当设定输送速度为78.5 mm/s时,每1 ms记录一次,输送速度波动可控制在0.7 mm/s内;改进模糊PID茶鲜叶输送传动系统响应时间比传统PID与模糊PID分别减少81.41%、61.74%;超调量分别降低81.24%、41.82%;采集目标图像平均峰值信噪比分别提高5.8、10.4 dB。结果表明,本文提出的方法具有更好的寻优性能和收敛速度。研究结果为基于机器视觉的茶鲜叶自动分级系统精确而稳定的控制奠定了理论基础,为解决由输送速度波动导致的图像模糊问题提供了技术方案。 展开更多
关键词 茶鲜叶分级 输送速度 模糊PID控制 粒子群算法
在线阅读 下载PDF
基于RGPSO-LightGBM的套管磨损深度预测 被引量:1
14
作者 秦彦斌 王健 +2 位作者 万志国 李琳琳 窦益华 《石油机械》 北大核心 2025年第5期139-146,共8页
传统的套管磨损预测模型在理想假设下无法达到满意的精度,依赖试验数据的推导方式也非常耗时且成本高。提出了一种反应式全局粒子群优化轻量级梯度提升机(RGPSO-LightGBM)的套管磨损深度预测模型。使用Pearson相关系数法及特征重要性对... 传统的套管磨损预测模型在理想假设下无法达到满意的精度,依赖试验数据的推导方式也非常耗时且成本高。提出了一种反应式全局粒子群优化轻量级梯度提升机(RGPSO-LightGBM)的套管磨损深度预测模型。使用Pearson相关系数法及特征重要性对多臂井径成像测井仪的报告数据及钻井日志进行分析,提取出关键特征值;利用LightGBM对磨损深度进行预测,结合RGPSO对LightGBM的多个超参数进行全局调优;将所提模型与BP神经网络(BPNN)、极限梯度提升(XGBoost)等模型进行对比。研究结果表明,所提模型的最高拟合优度(R^(2))可达0.9976,具有更好的预测准确性、鲁棒性和泛化能力,能够为后续油气井生产的智能化控制提供有效依据,对维护井筒完整性、保障油气井安全生产作业具有重要的实际意义。 展开更多
关键词 套管磨损深度 井筒完整性 LightGBM 粒子群优化 机器学习
在线阅读 下载PDF
基于PSO-GA模型的供水管网漏损预测研究 被引量:1
15
作者 彭燕莉 刘俊红 +2 位作者 陶修斌 覃佳肖 朱雅 《沈阳建筑大学学报(自然科学版)》 北大核心 2025年第1期121-129,共9页
准确、有效地定位供水管网中漏损位置,减少水资源浪费和降低检漏成本。基于EPANET软件构建供水管网水力模型,采用粒子群算法和遗传算法相结合方法对管网漏损预测模型进行优化求解、验证,以实现管网漏损定位和漏损程度判定;以西南地区某... 准确、有效地定位供水管网中漏损位置,减少水资源浪费和降低检漏成本。基于EPANET软件构建供水管网水力模型,采用粒子群算法和遗传算法相结合方法对管网漏损预测模型进行优化求解、验证,以实现管网漏损定位和漏损程度判定;以西南地区某城镇的供水管网为例,分别对单点和多点(2处及以上)漏损工况进行模拟评估。提出的供水管网漏损预测模型在单点漏损工况下,预测漏损量与实际漏损量的平均绝对百分比误差εmape小于3%,多点漏损量的εmape值均小于5.22%,且模拟定位节点与实际漏损点的拓扑距离绝大部分稳定在2以内。基于PSO-GA的漏损预测模型可有效地实现漏损定位与漏损程度的同步检测,并识别出多个近似节点,为检漏工作提供技术参考。 展开更多
关键词 供水管网 pso-GA算法 漏损定位 EPANET
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测 被引量:2
16
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(pso-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
基于SA-PSO-BP神经网络的煤层底板破坏深度预测 被引量:4
17
作者 李刚 赵艺鸣 +2 位作者 杨庆贺 才天 邹军鹏 《地下空间与工程学报》 北大核心 2025年第1期293-299,共7页
研究煤层底板破坏深度的准确预测对保证带压开采条件下煤矿的安全生产具有重要意义。针对传统BP神经网络预测底板破坏深度存在误差较大、容易陷入局部最优解、收敛速度慢等问题,提出了一种新的SA-PSO-BP网络模型。该模型以煤层倾角、开... 研究煤层底板破坏深度的准确预测对保证带压开采条件下煤矿的安全生产具有重要意义。针对传统BP神经网络预测底板破坏深度存在误差较大、容易陷入局部最优解、收敛速度慢等问题,提出了一种新的SA-PSO-BP网络模型。该模型以煤层倾角、开采深度、煤层开采厚度、工作面斜长作为评判指标,先利用粒子群优化算法(PSO)改进BP神经网络寻优过程、再引入模拟退火算法(SA)避免PSO算法陷入局部最优解,选取92组现场实测数据样本,对优化后的模型进行训练和预测。结果表明:SA-PSO-BP网络模型的拟合优度达到0.9835,比BP神经网络提高了0.2882;均方根误差达到1.3190,比BP神经网络减小了3.8641;平均绝对百分比误差达到5.4423,比BP神经网络减小了14.93%。构建的SA-PSO-BP网络模型具有可行性,为底板破坏深度的预测提供了一种合理的方法。 展开更多
关键词 带压开采 底板破坏深度 神经网络预测 SA-pso-BP神经网络
原文传递
基于PSO的随机共振钻井返出液信号处理方法 被引量:1
18
作者 任旭虎 王文倩 +2 位作者 刘通 闫宇晴 吴鹏宇 《石油机械》 北大核心 2025年第3期1-9,共9页
针对钻井作业中复杂噪声干扰了钻井返出液回波信号的准确提取和旅行时间计算、降低了钻井返出液液面检测精度的问题,提出了一种基于粒子群(Particle Swarm Optimization,PSO)的随机共振钻井返出液信号处理算法。通过引入非线性惯性权重... 针对钻井作业中复杂噪声干扰了钻井返出液回波信号的准确提取和旅行时间计算、降低了钻井返出液液面检测精度的问题,提出了一种基于粒子群(Particle Swarm Optimization,PSO)的随机共振钻井返出液信号处理算法。通过引入非线性惯性权重及新的个体最优值,对标准PSO算法进行优化,克服其易陷入局部极值缺陷的问题,获得实现原始信号共振效应的最佳非线性项系数,采用4阶龙格-库塔算法对随机共振进行求解,从而获得最佳输出信号。对不同井况的钻井返出液信号进行仿真和测试。测试结果表明:基于PSO的随机共振方法在有效滤除噪声的同时保留了信号的原始特征;处理后的信号一致性良好,表现出平滑稳定的特性。该方法提高了钻井返出液液面检测的精度,可为钻井返出液检测信号的处理提供一种高效可行的方法。 展开更多
关键词 钻井作业 钻井返出液回波信号 回波旅行时间 随机共振 粒子群 数据采集处理
在线阅读 下载PDF
基于改进PSO算法的水库群防洪优化调度
19
作者 黄显峰 王浩天 +1 位作者 高玉琴 谭毅苗 《水利水电技术(中英文)》 北大核心 2025年第10期203-212,共10页
【目的】水库群防洪优化调度在暴雨洪涝灾情中发挥着重要作用,但现有研究在改进PSO算法中缺乏迭代过程中对粒子与最优解距离的约束与调节以及综合考虑优化调度期间下游防洪对象与水库自身安全。【方法】为更好地解决水库群防洪优化调度... 【目的】水库群防洪优化调度在暴雨洪涝灾情中发挥着重要作用,但现有研究在改进PSO算法中缺乏迭代过程中对粒子与最优解距离的约束与调节以及综合考虑优化调度期间下游防洪对象与水库自身安全。【方法】为更好地解决水库群防洪优化调度问题,建立以最大削峰和最高水位最小为目标函数的优化调度模型,以山东费县祊河流域的龙王口、上冶、许家崖和石岚四个水库为研究对象,利用三角函数和贝塔分布对PSO算法的惯性权重和学习因子进行动态调整优化迭代过程,同时引入中心极值定理对迭代过程进行实时约束与调控,对PSO算法进行改进,以百年一遇和千年一遇设计洪水的入库流量作为输入条件,结合防洪调度约束和洪水演进对山东费县水库群优化调度模型进行评估。【结果】结果显示:库容越大,削峰效果越明显,在百年一遇的输入条件下,许家崖水库最大下泄流量相比于常规调度减少了559.62 m^(3)/s,相比于标准PSO优化调度减少了279.81 m^(3)/s,削峰率为10.4%,库容相比于常规调度降低了6.4%,相比于标准PSO优化调度降低了5.3%,在千年一遇的输入条件下,许家崖水库最大下泄流量比常规调度减少了701.79 m^(3)/s,相比于PSO优化调度减少了350.90 m^(3)/s,削峰率为12.1%,库容相比于常规调度降低了9.2%,相比于PSO优化调度降低了4.8%。【结论】结果表明:该优化调度模型在实现最大削峰和最低水位控制方面表现出显著效果。所提出的算法在寻优过程中的精度和稳定性得到了有效保障,显示出良好的优化性能和较强的实际应用价值。 展开更多
关键词 水库群 削峰准则 改进pso算法 优化调度 影响因素
在线阅读 下载PDF
基于改进PSO优化RBF神经网络的新型电力系统虚假数据攻击检测研究 被引量:1
20
作者 王新宇 张明月 《山东电力技术》 2025年第5期50-56,共7页
新型电力系统作为下一代电力系统,实现了系统的高效、安全、经济和环境友好的目标。然而,信息物理系统的深度融合使其面临新型的虚假数据攻击安全风险。针对此问题,提出一种基于改进粒子群(particle swarm optimization,PSO)优化径向基... 新型电力系统作为下一代电力系统,实现了系统的高效、安全、经济和环境友好的目标。然而,信息物理系统的深度融合使其面临新型的虚假数据攻击安全风险。针对此问题,提出一种基于改进粒子群(particle swarm optimization,PSO)优化径向基函数(radial basis function,RBF)的虚假数据攻击检测方法。首先,通过均值聚类方法优化RBF神经网络隐含层中心值来提高网络性能;其次,通过对权重系数和学习因子的设计,改善PSO算法的收敛性能,以优化RBF神经网络的场域基宽和权重值,进而提高RBF神经网络异常数据检测模型对虚假数据攻击的检测性能。最后,对比当前的PSO-RBF、人工蜂群优化RBF等方法,通过算例验证了本文所提检测算法可以最少提高检测率0.83%。 展开更多
关键词 虚假数据攻击 新型电力系统 改进pso 聚类优化 RBF
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部