期刊文献+
共找到5,944篇文章
< 1 2 250 >
每页显示 20 50 100
Grid-Connected/Islanded Switching Control Strategy for Photovoltaic Storage Hybrid Inverters Based on Modified Chimpanzee Optimization Algorithm
1
作者 Chao Zhou Narisu Wang +1 位作者 Fuyin Ni Wenchao Zhang 《Energy Engineering》 EI 2025年第1期265-284,共20页
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th... Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability. 展开更多
关键词 Photovoltaic storage hybrid inverters modified chimpanzee optimization algorithm droop control seamless switching
在线阅读 下载PDF
SL-COA:Hybrid Efficient and Enhanced Coati Optimization Algorithm for Structural Reliability Analysis
2
作者 Yunhan Ling Huajun Peng +4 位作者 Yiqing Shi Chao Xu Jingzhen Yan Jingjing Wang Hui Ma 《Computer Modeling in Engineering & Sciences》 2025年第4期767-808,共42页
Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence spee... Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence speed of structural reliability analysis,an improved coati optimization algorithm(COA)is proposed in this paper.In this study,the social learning strategy is used to improve the coati optimization algorithm(SL-COA),which improves the convergence speed and robustness of the newheuristic optimization algorithm.Then,the SL-COAis comparedwith the latest heuristic optimization algorithms such as the original COA,whale optimization algorithm(WOA),and osprey optimization algorithm(OOA)in the CEC2005 and CEC2017 test function sets and two engineering optimization design examples.The optimization results show that the proposed SL-COA algorithm has a high competitiveness.Secondly,this study introduces the SL-COA algorithm into the MPP(Most Probable Point)search process based on FORM and constructs a new reliability analysis method.Finally,the proposed reliability analysis method is verified by four mathematical examples and two engineering examples.The results show that the proposed SL-COA-assisted FORM exhibits fast convergence and avoids premature convergence to local optima as demonstrated by its successful application to problems such as composite cylinder design and support bracket analysis. 展开更多
关键词 hybrid reliability analysis single-loop interactive hybrid analysis most probability point metaheuristic algorithms coati optimization algorithm
在线阅读 下载PDF
A Bi-Level Optimization Model and Hybrid Evolutionary Algorithm for Wind Farm Layout with Different Turbine Types
3
作者 Erping Song Zipin Yao 《Energy Engineering》 2025年第12期5129-5147,共19页
Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and eco... Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and economic viability of wind farm,where the wake effect,wind speed,types of wind turbines,etc.,have an impact on the output power of the wind farm.To solve the optimization problem of wind farm layout under complex terrain conditions,this paper proposes wind turbine layout optimization using different types of wind turbines,the aim is to reduce the influence of the wake effect and maximize economic benefits.The linear wake model is used for wake flow calculation over complex terrain.Minimizing the unit energy cost is taken as the objective function,considering that the objective function is affected by cost and output power,which influence each other.The cost function includes construction cost,installation cost,maintenance cost,etc.Therefore,a bi-level constrained optimization model is established,in which the upper-level objective function is to minimize the unit energy cost,and the lower-level objective function is to maximize the output power.Then,a hybrid evolutionary algorithm is designed according to the characteristics of the decision variables.The improved genetic algorithm and differential evolution are used to optimize the upper-level and lower-level objective functions,respectively,these evolutionary operations search for the optimal solution as much as possible.Finally,taking the roughness of different terrain,wind farms of different scales and different types of wind turbines as research scenarios,the optimal deployment is solved by using the algorithm in this paper,and four algorithms are compared to verify the effectiveness of the proposed algorithm. 展开更多
关键词 Bi-level optimization genetic algorithm differential evolution hybrid evolutionary algorithm wind farm layout
在线阅读 下载PDF
Derivative Free and Dispatch Algorithm-Based Optimization and Power System Assessment of a Biomass-PV-Hydrogen Storage-Grid Hybrid Renewable Microgrid for Agricultural Applications
4
作者 Md.Fatin Ishraque Akhlaqur Rahman +5 位作者 Kamil Ahmad Sk.A.Shezan Md.Meheraf Hossain Sheikh Rashel Al Ahmed Md.Iasir Arafat Noor E Nahid Bintu 《Energy Engineering》 2025年第8期3347-3375,共29页
In this research work,the localized generation from renewable resources and the distribution of energy to agricultural loads,which is a local microgrid concept,have been considered,and its feasibility has been assesse... In this research work,the localized generation from renewable resources and the distribution of energy to agricultural loads,which is a local microgrid concept,have been considered,and its feasibility has been assessed.Two dispatch algorithms,named Cycle Charging and Load Following,are implemented to find the optimal solution(i.e.,net cost,operation cost,carbon emission.energy cost,component sizing,etc.)of the hybrid system.The microgrid is also modeled in the DIgSILENT Power Factory platform,and the respective power system responses are then evaluated.The development of dispatch algorithms specifically tailored for agricultural applications has enabled to dynamically manage energy flows,responding to fluctuating demands and resource availability in real-time.Through careful consideration of factors such as seasonal variations and irrigation requirements,these algorithms have enhanced the resilience and adaptability of the microgrid to dynamic operational conditions.However,it is revealed that both approaches have produced the same techno-economic results showing no significant difference.This illustrates the fact that the considered microgrid can be implemented with either strategy without significant fluctuation in performance.The study has shown that the harmful gas emission has also been limited to only 17,928 kg/year of CO_(2),and 77.7 kg/year of Sulfur Dioxide.For the proposed microgrid and load profile of 165.29 kWh/day,the net present cost is USD 718,279,and the cost of energy is USD 0.0463 with a renewable fraction of 97.6%.The optimal sizes for PV,Bio,Grid,Electrolyzer,and Converter are 1494,500,999,999,500,and 495 kW,respectively.For a hydrogen tank(HTank),the optimal size is found to be 350 kg.This research work provides critical insights into the techno-economic feasibility and environmental impact of integrating biomass-PV-hydrogen storage-Grid hybrid renewable microgrids into agricultural settings. 展开更多
关键词 Renewable energy derivative-free algorithm OPTIMIZATION hybrid system energy storage
在线阅读 下载PDF
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
5
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 Multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
Multi-Level Subpopulation-Based Particle Swarm Optimization Algorithm for Hybrid Flow Shop Scheduling Problem with Limited Buffers
6
作者 Yuan Zou Chao Lu +1 位作者 Lvjiang Yin Xiaoyu Wen 《Computers, Materials & Continua》 2025年第8期2305-2330,共26页
The shop scheduling problem with limited buffers has broad applications in real-world production scenarios,so this research direction is of great practical significance.However,there is currently little research on th... The shop scheduling problem with limited buffers has broad applications in real-world production scenarios,so this research direction is of great practical significance.However,there is currently little research on the hybrid flow shop scheduling problem with limited buffers(LBHFSP).This paper deeply investigates the LBHFSP to optimize the goal of the total completion time.To better solve the LBHFSP,a multi-level subpopulation-based particle swarm optimization algorithm(MLPSO)is proposed,which is founded on the attributes of the LBHFSP and the shortcomings of the basic PSO(particle swarm optimization)algorithm.In MLPSO,firstly,considering the impact of the limited buffers on the process of subsequent operations,a specific circular decoding strategy is developed to accommodate the characteristics of limited buffers.Secondly,an initialization strategy based on blocking time is designed to enhance the quality and diversity of the initial population.Afterward,a multi-level subpopulation collaborative search is developed to prevent being trapped in a local optimum and improve the global exploration capability.Additionally,a local search strategy based on the first blocked job is designed to enhance the MLPSO algorithm’s exploitation capability.Lastly,numerous experiments are carried out to test the performance of the proposed MLPSO by comparing it with classical intelligent optimization and popular algorithms in recent years.The results confirm that the proposed MLPSO has an outstanding performance when compared to other algorithms when solving LBHFSP. 展开更多
关键词 hybrid flow shop scheduling problem limited buffers PSO algorithm collaborative search blocking phenomenon
在线阅读 下载PDF
Hybrid genetic algorithm for parametric optimization of surface pipeline networks in underground natural gas storage harmonized injection and production conditions
7
作者 Jun Zhou Zichen Li +4 位作者 Shitao Liu Chengyu Li Yunxiang Zhao Zonghang Zhou Guangchuan Liang 《Natural Gas Industry B》 2025年第2期234-250,共17页
The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface inject... The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS. 展开更多
关键词 Underground natural gas storage Surface injection and production pipeline Parameter optimization hybrid genetic algorithm
在线阅读 下载PDF
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
8
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
HYBRID MULTI-OBJECTIVE GRADIENT ALGORITHM FOR INVERSE PLANNING OF IMRT
9
作者 李国丽 盛大宁 +3 位作者 王俊椋 景佳 王超 闫冰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第1期97-101,共5页
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an... The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications. 展开更多
关键词 gradient methods inverse planning multi-objective optimization hybrid gradient algorithm
暂未订购
Improved NSGA-Ⅱ Multi-objective Genetic Algorithm Based on Hybridization-encouraged Mechanism 被引量:9
10
作者 Sun Yijie Shen Gongzhang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第6期540-549,共10页
To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm ... To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm (NSGA-Ⅱ). This mechanism uses the normalized distance to evaluate the difference among genes in a population. Three possible modes of crossover operators--"Max Distance", "Min-Max Distance", and "Neighboring-Max"--are suggested and analyzed. The mode of "Neighboring-Max", which not only takes advantage of hybridization but also improves the distribution of the population near Pareto optimal front, is chosen and used in NSGA-Ⅱ on the basis of hybridization-encouraged mechanism (short for HEM-based NSGA-Ⅱ). To prove the HEM-based algorithm, several problems are studied by using standard NSGA-Ⅱ and the presented method. Different evaluation criteria are also used to judge these algorithms in terms of distribution of solutions, convergence, diversity, and quality of solutions. The numerical results indicate that the application of hybridization-encouraged mechanism could effectively improve the performances of genetic algorithm. Finally, as an example in engineering practices, the presented method is used to design a longitudinal flight control system, which demonstrates the obtainability of a reasonable and correct Pareto front. 展开更多
关键词 multi-objective optimization genetic algorithms DIVERSITY hybridIZATION CROSSOVER
原文传递
Series-parallel Hybrid Vehicle Control Strategy Design and Optimization Using Real-valued Genetic Algorithm 被引量:14
11
作者 XIONG Weiwei YIN Chengliang ZHANG Yong ZHANG Jianlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第6期862-868,共7页
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been... Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles. 展开更多
关键词 series-parallel hybrid electric vehicle control strategy DESIGN OPTIMIZATION real-valued genetic algorithm
在线阅读 下载PDF
Identification of vibration loads on hydro generator by using hybrid genetic algorithm 被引量:6
12
作者 Shouju Li Yingxi Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第6期603-610,共8页
Vibration dynamic characteristics have been a major issue in the modeling and mechanical analysis of large hydro generators. An algorithm is developed for identifying vibration dynamic characteristics by means of hybr... Vibration dynamic characteristics have been a major issue in the modeling and mechanical analysis of large hydro generators. An algorithm is developed for identifying vibration dynamic characteristics by means of hybrid genetic algorithm. From the measured dynamic responses of a hydro generator, an appropriate estimation algorithm is needed to identify the loading parameters, including the main frequencies and amplitudes of vibrating forces. In order to identify parameters in an efficient and robust manner, an optimization method is proposed that combines genetic algorithm with simulated annealing and elitist strategy. The hybrid genetic algorithm is then used to tackle an ill-posed problem of parameter identification, in which the effectiveness of the proposed optimization method is confirmed by its comparison with actual observation data. 展开更多
关键词 hybrid genetic algorithm Parameteridentification Vibration responses Fieldmeasurement Simulated annealing
在线阅读 下载PDF
New hybrid FDTD algorithm for electromagnetic problem analysis 被引量:4
13
作者 Xin-Bo He Bing Wei +2 位作者 Kai-Hang Fan Yi-Wen Li Xiao-Long Wei 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第7期211-215,共5页
Since the time step of the traditional finite-difference time-domain(FDTD) method is limited by the small grid size, it is inefficient when dealing with the electromagnetic problems of multi-scale structures.Therefore... Since the time step of the traditional finite-difference time-domain(FDTD) method is limited by the small grid size, it is inefficient when dealing with the electromagnetic problems of multi-scale structures.Therefore, the explicit and unconditionally stable FDTD(US-FDTD) approach has been developed to break through the limitation of Courant–Friedrich–Levy(CFL) condition.However, the eigenvalues and eigenvectors of the system matrix must be calculated before the time iteration in the explicit US-FDTD.Moreover, the eigenvalue decomposition is also time consuming, especially for complex electromagnetic problems in practical application.In addition, compared with the traditional FDTD method, the explicit US-FDTD method is more difficult to introduce the absorbing boundary and plane wave.To solve the drawbacks of the traditional FDTD and the explicit US-FDTD, a new hybrid FDTD algorithm is proposed in this paper.This combines the explicit US-FDTD with the traditional FDTD, which not only overcomes the limitation of CFL condition but also reduces the system matrix dimension, and introduces the plane wave and the perfectly matched layer(PML) absorption boundary conveniently.With the hybrid algorithm, the calculation of the eigenvalues is only required in the fine mesh region and adjacent coarse mesh region.Therefore, the calculation efficiency is greatly enhanced.Furthermore, the plane wave and the absorption boundary introduction of the traditional FDTD method can be directly utilized.Numerical results demonstrate the effectiveness, accuracy, stability, and convenience of this hybrid algorithm. 展开更多
关键词 unconditionally STABLE hybrid FDTD algorithm ELECTROMAGNETIC PROBLEM
原文传递
Parameter selection of support vector regression based on hybrid optimization algorithm and its application 被引量:9
14
作者 Xin WANG Chunhua YANG +1 位作者 Bin QIN Weihua GUI 《控制理论与应用(英文版)》 EI 2005年第4期371-376,共6页
Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters... Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters on generalization error, a new approach with two steps is proposed for selecting SVR parameters, First the kernel function and SVM parameters are optimized roughly through genetic algorithm, then the kernel parameter is finely adjusted by local linear search, This approach has been successfully applied to the prediction model of the sulfur content in hot metal. The experiment results show that the proposed approach can yield better generalization performance of SVR than other methods, 展开更多
关键词 Support vector regression Parameters tuning hybrid optimization Genetic algorithm(GA)
在线阅读 下载PDF
A New Hybrid Algorithm and Its Numerical Realization for a Quasi-nonexpansive Mapping 被引量:7
15
作者 GAO XING-HUI MA LE-RONG Ji You-qing 《Communications in Mathematical Research》 CSCD 2017年第4期340-346,共7页
The purpose of this article is to propose a new hybrid projection method for a quasi-nonexpansive mapping. The strong convergence of the algorithm is proved in real Hilbert spaces. A numerical experiment is also inclu... The purpose of this article is to propose a new hybrid projection method for a quasi-nonexpansive mapping. The strong convergence of the algorithm is proved in real Hilbert spaces. A numerical experiment is also included to explain the effectiveness of the proposed methods. The results of this paper are interesting extensions of those known results. 展开更多
关键词 quasi-nonexpansive mapping hybrid algorithm strong convergence Hilbert space
在线阅读 下载PDF
Design of Optimal Weight for a Gear Transmission System Using Hybrid Taguchi-Genetic Algorithm 被引量:5
16
作者 CHEN Jie WU Shijing HSIEH Chenhuei 《Wuhan University Journal of Natural Sciences》 CAS 2012年第4期331-336,共6页
The gear transmission system has been widely applied in mechanical systems,and many high-performance applications of these systems require low weight.With the aid of establishing the optimization model of the gear tra... The gear transmission system has been widely applied in mechanical systems,and many high-performance applications of these systems require low weight.With the aid of establishing the optimization model of the gear transmission system that consists of an objective function and some constraints(for example,the bending stress,the contact stress,the torsional strength,etc.),the optimal weight design of the gear transmission system can be transformed into the optimization problem for the objective function under the constraints.Moreover,both the shaft and the gear of the gear transmission system are considered simultaneously in our design.The hybrid Taguchi-genetic algorithm(HTGA)is employed to find the optimal design variables and the optimal weight of the system.An illustrated example for the single spur gear reducer is given to show that the optimal weight design problem can be successfully solved using the proposed design scheme.It also proves the high efficiency and feasibility of the algorithm in the gear design. 展开更多
关键词 hybrid Taguchi-genetic algorithm(HTGA) optimal design gear transmission systems optimal weight design
原文传递
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:7
17
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 thin-walled structure GA-BP hybrid algorithm IMPACT energy-absorption characteristic FORECAST
在线阅读 下载PDF
A Gridless-Finite Volume Hybrid Algorithm for Euler Equations 被引量:4
18
作者 马志华 陈红全 吴晓军 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第4期286-294,共9页
A fast hybrid algorithm based on gridless method coupled with finite volume method (FVM) is developed for the solution to Euler equations. Compared with pure gridless method, the efficiency of the hybrid algorithm i... A fast hybrid algorithm based on gridless method coupled with finite volume method (FVM) is developed for the solution to Euler equations. Compared with pure gridless method, the efficiency of the hybrid algorithm is improved to the level of finite volume method for most parts of the flow filed arc covered with grid cells. Moreover, the hybrid method is flexible to deal with the configurations as clouds of points are used to cover the region adjacent to the bodies. Mirror satellites and mirror grid cells arc introduced to the interface to accomplish data communication between the different parts of the flow field. The Euler Equations arc spatially discretized with finite volume method and gridless method in mesh and clouds of points respectively, and an explicit four-stage Runge-Kutta scheme is utilized to reach the steady-state solution. Internal flows in channels and external flows over airfoils arc investigated with hybrid method, and the solutions arc comparad to those using pure finite volume method and pure gridless method. Numerical examples show that the hybrid algorithm captures the shock waves accurately, and it is as efficient as fmite volume method. 展开更多
关键词 fluid mechanicsl hybrid algorithm gridless method finite volume method Euler equations
在线阅读 下载PDF
Optimization of the seismic processing phase-shift plus finite-difference migration operator based on a hybrid genetic and simulated annealing algorithm 被引量:2
19
作者 Luo Renze Huang Yuanyi +2 位作者 Liang Xianghao Luo Jun Cao Ying 《Petroleum Science》 SCIE CAS CSCD 2013年第2期190-194,共5页
Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome... Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation. 展开更多
关键词 Migration operator phase-shift plus finite-difference hybrid algorithm genetic andsimulated annealing algorithm optimization coefficient
原文传递
A new hybrid algorithm for global optimization and slope stability evaluation 被引量:4
20
作者 Taha Mohd Raihan Khajehzadeh Mohammad Eslami Mahdiyeh 《Journal of Central South University》 SCIE EI CAS 2013年第11期3265-3273,共9页
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a... A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems. 展开更多
关键词 gravitational search algorithm sequential quadratic programming hybrid algorithm global optimization slope stability
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部