期刊文献+
共找到282,652篇文章
< 1 2 250 >
每页显示 20 50 100
基于PSO-DE算法的分布式光伏优化配置研究 被引量:10
1
作者 张铁峰 左丽莉 +1 位作者 李谦 王书峰 《华北电力大学学报(自然科学版)》 CAS 北大核心 2020年第2期56-63,共8页
为解决分布式光伏电源接入配电网的优化配置问题,提出一种基于粒子群和差分进化的PSO-DE算法,同时构建了包含网损最小、投资成本最低、电压质量最优的无偏好多目标分布式光伏选址定容综合优化模型。首先对差分进化算法的变异过程进行改... 为解决分布式光伏电源接入配电网的优化配置问题,提出一种基于粒子群和差分进化的PSO-DE算法,同时构建了包含网损最小、投资成本最低、电压质量最优的无偏好多目标分布式光伏选址定容综合优化模型。首先对差分进化算法的变异过程进行改进,然后利用粒子群算法对差分进化算法中的缩放因子和杂交因子进行优化,采用标准测试函数对PSO-DE算法进行测试和参数敏感度分析,验证了算法的客观性和稳定性;并利用无偏好可变权重对多目标模型进行处理;最后以分布式光伏选址定容优化的实际应用为例,并与其他算法对比,验证了模型和算法的有效性和实用性。 展开更多
关键词 分布式光伏电源 优化配置 pso-de算法 多目标优化 敏感度分析
在线阅读 下载PDF
基于PSO-DE算法的污水处理优化控制研究 被引量:2
2
作者 叶永伟 葛沈浩 +1 位作者 任设东 钱志勤 《计算机测量与控制》 2016年第2期68-70,76,共4页
针对目前污水处理系统能耗过大,处理效果差等问题,提出了基于改进型粒子群算法的优化控制;采用粒子群差分进化算法(PSO-DE)可以提高粒子全局搜索能力与收敛速度,克服粒子早熟现象;在实际应用中建立以溶解氧浓度(DO)与污泥排放量(Qw)为变... 针对目前污水处理系统能耗过大,处理效果差等问题,提出了基于改进型粒子群算法的优化控制;采用粒子群差分进化算法(PSO-DE)可以提高粒子全局搜索能力与收敛速度,克服粒子早熟现象;在实际应用中建立以溶解氧浓度(DO)与污泥排放量(Qw)为变量,以能耗与出水水质为约束条件的数学模型,通过算法全局寻优求解,验证结果表明该算法能保证出水水质前提下降低污水处理能耗。 展开更多
关键词 污水处理 优化控制 改进粒子群算法
在线阅读 下载PDF
基于PSO-DE算法的突发水域污染溯源研究 被引量:10
3
作者 曹宏桂 贠卫国 《中国环境科学》 EI CAS CSSCI CSCD 北大核心 2017年第10期3807-3812,共6页
利用PSO-DE混合优化算法结合移动监测平台研究了污染物源项识别问题,包括单点固定源和多点固定源位置的反演.该方法把源项识别反问题转化为非线性优化问题,用N个移动平台检测并记录所在水域的污染物浓度,将各自位置的坐标值记为此移动... 利用PSO-DE混合优化算法结合移动监测平台研究了污染物源项识别问题,包括单点固定源和多点固定源位置的反演.该方法把源项识别反问题转化为非线性优化问题,用N个移动平台检测并记录所在水域的污染物浓度,将各自位置的坐标值记为此移动平台的p_(best),每一个移动平台均对应一个p_(best),即共有N个p_(best),将N个移动平台获取的污染物浓度值进行对比,选择最大污染物浓度值对应的水域坐标,记为g_(best),以此作为初始种群先进行PSO优化获得的种群,再进行DE优化,取两者浓度高的作为g_(best),直到获得浓度值最高的点,即污染物初始投放点.多个算例的计算结果表明,采用该算法对含点源的二维水域污染源溯源问题能够得到精度较高的反演结果. 展开更多
关键词 pso-de 污染物溯源 移动监测平台 二维水域
在线阅读 下载PDF
基于PSO-DELM的手机上网流量预测方法 被引量:11
4
作者 周莉 刘东 郑晓亮 《计算机工程与设计》 北大核心 2021年第2期316-323,共8页
为提高手机上网流量预测的精度,提出一种使用粒子群算法优化深度极限学习机的手机上网流量预测方法。流量数据具有非线性、自相似性和长相关性的特性,且以时间刻度为单位记录。通过对具有时序性质的一维流量数据重新排列组合,产生新的... 为提高手机上网流量预测的精度,提出一种使用粒子群算法优化深度极限学习机的手机上网流量预测方法。流量数据具有非线性、自相似性和长相关性的特性,且以时间刻度为单位记录。通过对具有时序性质的一维流量数据重新排列组合,产生新的多维流量数据样本集,采用PSO算法优化DELM中的多个隐含层的神经元个数构成PSO-DELM组合模型进行流量预测。实验结果表明,PSO-DELM模型预测的效果明显优于其它模型,能更好满足流量预测的实时性和高精度的要求。 展开更多
关键词 流量预测 粒子群算法 深度极限学习机 时序性质 组合模型
在线阅读 下载PDF
基于PSO-DE和LMI的鲁棒静态输出反馈控制 被引量:2
5
作者 孔英秀 赵丁选 +2 位作者 杨彬 李天宇 韩京元 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第5期1375-1380,共6页
在多目标控制框架下,针对连续多面体不确定系统,提出了一种混合算法来解决鲁棒静态输出反馈控制问题。为了计算静态输出反馈增益,通过把粒子群优化(PSO)和差分进化(DE)的混合算法与线性矩阵不等式(LMI)方法相结合,求解具有双线性矩阵不... 在多目标控制框架下,针对连续多面体不确定系统,提出了一种混合算法来解决鲁棒静态输出反馈控制问题。为了计算静态输出反馈增益,通过把粒子群优化(PSO)和差分进化(DE)的混合算法与线性矩阵不等式(LMI)方法相结合,求解具有双线性矩阵不等式(BMI)约束的优化问题。PSO-DE混合算法用来得到控制器的样本,LMI方法用来最优化系统的性能指标。以混合H2/H∞控制问题为例,给出了一种鲁棒多目标静态输出反馈控制求解的算法。仿真结果表明,与以往的迭代法和DE-LMI算法相比,提出的PSO-DE/LMI混合算法提高了收敛速度和精度。 展开更多
关键词 自动控制技术 静态输出反馈 粒子群优化算法 差分进化算法 线性矩阵不等式
在线阅读 下载PDF
基于PSO-DE算法的光伏配电网动态重构方法研究 被引量:4
6
作者 杨德栋 金建新 《电子设计工程》 2020年第24期48-51,56,共5页
现有的光伏配电网动态重构方法存在光伏配电网损耗高的问题,为了解决上述问题,提出基于PSO-DE算法的光伏配电网动态重构方法。依据重构需求,选取目标构建光伏配电网动态重构数学模型,以此为基础,采用BP神经网络法预测光伏配电网日负荷... 现有的光伏配电网动态重构方法存在光伏配电网损耗高的问题,为了解决上述问题,提出基于PSO-DE算法的光伏配电网动态重构方法。依据重构需求,选取目标构建光伏配电网动态重构数学模型,以此为基础,采用BP神经网络法预测光伏配电网日负荷。以上述预测结果为依据,基于时间区间不等划分法划分动态重构时段,通过PSO-DE算法制定光伏配电网动态重构流程,实现光伏配电网的动态重构。实验数据显示,与现有的光伏配电网动态重构方法相比较,提出的光伏配电网动态重构方法极大降低了光伏配电网的损耗,充分说明文中提出的光伏配电网动态重构方法具备更好的重构效果。 展开更多
关键词 pso-de算法 光伏配电网 动态 重构
在线阅读 下载PDF
基于PSO-DE混合算法的结构可靠性优化设计 被引量:7
7
作者 郑灿赫 孟广伟 +2 位作者 李锋 周立明 孔英秀 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第9期41-45,75,共6页
为提高结构可靠性优化设计的效率,利用粒子群优化(PSO)和差分进化(DE)算法的搜索特性,构造一种PSO-DE混合算法,以克服基本PSO算法的早熟问题.将PSO-DE混合算法与结构可靠性优化理论相结合,建立了结构系统失效概率约束下以结构质量最小... 为提高结构可靠性优化设计的效率,利用粒子群优化(PSO)和差分进化(DE)算法的搜索特性,构造一种PSO-DE混合算法,以克服基本PSO算法的早熟问题.将PSO-DE混合算法与结构可靠性优化理论相结合,建立了结构系统失效概率约束下以结构质量最小化为目标的优化模型.算例结果表明:与基本PSO算法相比,文中提出的PSO-DE混合算法提高了收敛速度和计算精度;该算法易于实现,鲁棒性好. 展开更多
关键词 随机结构 可靠性优化 粒子群优化算法 差分进化算法
在线阅读 下载PDF
基于数学建模的PSO-DE算法在机器人智能拣货过程中的应用研究 被引量:1
8
作者 李云娟 樊雪双 《自动化与仪器仪表》 2024年第3期197-200,205,共5页
随着互联网技术的发展,网络电商发展迅速。为更好地实现智能仓储系统中商品订单的分拣,提高拣货效率,研究基于粒子群算法和双重编码方式构建拣货机器人的智能数学模型。针对粒子群算法在实现过程中存在的问题,研究引入交叉算法对其进行... 随着互联网技术的发展,网络电商发展迅速。为更好地实现智能仓储系统中商品订单的分拣,提高拣货效率,研究基于粒子群算法和双重编码方式构建拣货机器人的智能数学模型。针对粒子群算法在实现过程中存在的问题,研究引入交叉算法对其进行改进。实验结果显示,研究提出的基于改进粒子群算法的双重编码智能机器人拣货算法在训练集上的F1值为0.925,显著高于另外几种方法。由此说明,研究构建的智能机器人拣货数学模型可以更好地实现智能仓储系统中商品的订单的拣货效率,全面提高商品订单的处理能力,实现资源的优化利用。 展开更多
关键词 数学建模 粒子群算法 双重编码方式 机器人拣货 智能仓储系统
原文传递
一种新的双种群PSO-DE混合算法 被引量:4
9
作者 马永刚 刘俊梅 高岳林 《武汉理工大学学报(交通科学与工程版)》 2011年第6期1261-1264,共4页
给出一种新的粒子群算法和差分进化算法相结合的混合算法.该算法基于一种双种群进化策略,其中一个种群由粒子群算法进化,另一种群由差分进化算法进化.此外,采用一种信息分享机制,在算法的进化过程中2个种群中的个体可以实现协同进化.为... 给出一种新的粒子群算法和差分进化算法相结合的混合算法.该算法基于一种双种群进化策略,其中一个种群由粒子群算法进化,另一种群由差分进化算法进化.此外,采用一种信息分享机制,在算法的进化过程中2个种群中的个体可以实现协同进化.为了进一步提高混合算法的性能,在差分进化算法中融入一种线性递减加权策略的变异操作和指数递增交叉概率算子.通过4个标准测试函数的测试结果表明文中提出的混合算法是一种收敛速度快、求解精度高、鲁棒性较强的全局优化算法. 展开更多
关键词 全局优化 加权策略 粒子群优化算法 差分进化算法 混合算法
在线阅读 下载PDF
一种基于SAPSO-DE混合算法的结构非概率可靠性优化设计 被引量:2
10
作者 郑灿赫 孟广伟 +2 位作者 李锋 孔英秀 金耿日 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第5期1628-1634,共7页
针对不确定性结构的非概率可靠性优化问题,提出一种基于模拟退火粒子群算法和差分进化算法(SAPSODE混合算法)的结构非概率可靠性优化设计方法。考虑结构非概率可靠性指标约束,建立最小化结构体积为目标的优化模型。为了提高结构非概率... 针对不确定性结构的非概率可靠性优化问题,提出一种基于模拟退火粒子群算法和差分进化算法(SAPSODE混合算法)的结构非概率可靠性优化设计方法。考虑结构非概率可靠性指标约束,建立最小化结构体积为目标的优化模型。为了提高结构非概率可靠性优化问题的计算精度和效率,采用基于认知经验进化的SAPSO-DE混合算法进行非概率可靠性优化设计。研究结果表明:基于SAPSO-DE混合算法的结构非概率可靠性优化设计方法克服了PSO算法的早熟现象,并提高了收敛速度和精度;该方法的全局搜索能力强,且具有较强的稳定性。 展开更多
关键词 非概率可靠性指标 凸模型 不确定性 粒子群优化算法 差分进化算法 模拟退火
在线阅读 下载PDF
基于PSO-DE-CA的FIR滤波器设计
11
作者 张旭珍 贾品贵 薛鹏骞 《计算机工程》 CAS CSCD 北大核心 2011年第23期183-185,共3页
为优化有限脉冲响应(FIR)数字滤波器的设计,提出一种基于双种群的文化算法。种群空间分别按照粒子群优化和差分进化算法独立进化。信仰空间作为知识库,用于保存求解问题的群体经验。仿真实验结果表明,在设计FIR数字滤波器时,该算法具有... 为优化有限脉冲响应(FIR)数字滤波器的设计,提出一种基于双种群的文化算法。种群空间分别按照粒子群优化和差分进化算法独立进化。信仰空间作为知识库,用于保存求解问题的群体经验。仿真实验结果表明,在设计FIR数字滤波器时,该算法具有较高的鲁棒性和较快的收敛速度,优化结果好于同类算法。 展开更多
关键词 文化算法 双种群 粒子群优化 差分进化 有限脉冲响应 数字滤波器
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
12
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
13
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
14
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
15
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
16
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
17
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
18
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
19
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
Rapid pathologic grading-based diagnosis of esophageal squamous cell carcinoma via Raman spectroscopy and a deep learning algorithm 被引量:1
20
作者 Xin-Ying Yu Jian Chen +2 位作者 Lian-Yu Li Feng-En Chen Qiang He 《World Journal of Gastroenterology》 2025年第14期32-46,共15页
BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the e... BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the early diagnosis of tumors because it can reflect the structures of substances and their changes at the molecular level.AIM To detect alterations in Raman spectral information across different stages of esophageal neoplasia.METHODS Different grades of esophageal lesions were collected,and a total of 360 groups of Raman spectrum data were collected.A 1D-transformer network model was proposed to handle the task of classifying the spectral data of esophageal squamous cell carcinoma.In addition,a deep learning model was applied to visualize the Raman spectral data and interpret their molecular characteristics.RESULTS A comparison among Raman spectral data with different pathological grades and a visual analysis revealed that the Raman peaks with significant differences were concentrated mainly at 1095 cm^(-1)(DNA,symmetric PO,and stretching vibration),1132 cm^(-1)(cytochrome c),1171 cm^(-1)(acetoacetate),1216 cm^(-1)(amide III),and 1315 cm^(-1)(glycerol).A comparison among the training results of different models revealed that the 1Dtransformer network performed best.A 93.30%accuracy value,a 96.65%specificity value,a 93.30%sensitivity value,and a 93.17%F1 score were achieved.CONCLUSION Raman spectroscopy revealed significantly different waveforms for the different stages of esophageal neoplasia.The combination of Raman spectroscopy and deep learning methods could significantly improve the accuracy of classification. 展开更多
关键词 Raman spectroscopy Esophageal neoplasia Early diagnosis Deep learning algorithm Rapid pathologic grading
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部