期刊文献+
共找到781,911篇文章
< 1 2 250 >
每页显示 20 50 100
基于PSO-BP神经网络的硅基光子器件光损耗异常监测系统
1
作者 闵月淇 谢亮 《现代电子技术》 北大核心 2026年第2期49-53,共5页
硅基光子器件的光损耗易受多种运行参数影响,导致其光损耗异常监测存在偏差或遗漏。为全面考虑多种运行参数的影响,实现对其光损耗异常的全面精准监测,设计一种基于PSO-BP神经网络的硅基光子器件光损耗异常监测系统。采用系统的数据采... 硅基光子器件的光损耗易受多种运行参数影响,导致其光损耗异常监测存在偏差或遗漏。为全面考虑多种运行参数的影响,实现对其光损耗异常的全面精准监测,设计一种基于PSO-BP神经网络的硅基光子器件光损耗异常监测系统。采用系统的数据采集模块实时采集硅基光子器件的波长、温度等运行参数,再通过数据预处理模块对各参数进行处理,并输入以PSO-BP神经网络为核心的光损耗检测模块,从而获得各种运行参数下的光损耗检测值。异常监测预警模块将所得光损耗检测值与设定阈值进行对比,判断光损耗是否异常,若异常则发出预警。用户交互模块呈现异常监测及预警信息,完成硅基光子器件光损耗异常监测。结果表明,所设计系统可针对不同波长、温度、波导长度及输出光功率等运行参数,实现对硅基光子器件光损耗异常的全面监测,并对各种异常光损耗场景进行有效预警。 展开更多
关键词 硅基光子器件 光损耗 异常监测 pso-bp神经网络 异常预警 波导长度
在线阅读 下载PDF
基于PSO-BP神经网络的热电厂负荷预测策略研究
2
作者 胡旭 米欣 曹琦 《科技创新与应用》 2026年第1期32-35,共4页
目前能源的高效利用和绿色发展受到学者们广泛的关注。该文针对某热电厂能源管理系统产生的大量历史数据,采用大数据分析的方法计算出数据之间的关联系数,以判断数据间的关联状况。建立PSO-BP神经网络模型对某热电厂未来24 h的热负荷进... 目前能源的高效利用和绿色发展受到学者们广泛的关注。该文针对某热电厂能源管理系统产生的大量历史数据,采用大数据分析的方法计算出数据之间的关联系数,以判断数据间的关联状况。建立PSO-BP神经网络模型对某热电厂未来24 h的热负荷进行预测,以便为热电厂更好地提供生产、运营、管理决策服务等。PSO-BP神经网络模型是将粒子群算法与BP算法融合产生的,不仅能够提高BP神经网络的预测精度,而且可以有效地解决BP神经网络算法学习速度慢及易陷入局部极小值、稳定性差等问题。 展开更多
关键词 大数据分析 用热特性 预测模型 pso-bp神经网络 预测精度
在线阅读 下载PDF
基于PSO-BP神经网络矿井涌水量预测模型
3
作者 李启兴 张宇 +1 位作者 乔秀杰 闫国成 《煤》 2026年第1期94-99,共6页
矿井涌水量的准确预测对矿山建设及煤层安全高效回采意义重大。文章以某华北型煤田煤矿为研究对象,该矿主要受石炭-二叠系砂岩裂隙含水层影响。研究采用时间序列分析方法、BP和PSO-BP神经网络模型构建多模型预测体系。通过聚类分析发现... 矿井涌水量的准确预测对矿山建设及煤层安全高效回采意义重大。文章以某华北型煤田煤矿为研究对象,该矿主要受石炭-二叠系砂岩裂隙含水层影响。研究采用时间序列分析方法、BP和PSO-BP神经网络模型构建多模型预测体系。通过聚类分析发现,该矿涌水量受季节性影响小,进而将其视为整体研究。时间序列模型预测结果表明,该模型有一定预测能力,但存在弊端。引入PSO-BP方法优化模型,对比BP神经网络等模型,结果显示PSO-BP神经网络预测模型准确性最高(R^(2)=0.9924,RMSE值为0.08219),为矿井涌水量精准预测、灾害预警及煤矿安全生产提供了有效方法和理论支撑。 展开更多
关键词 涌水量预测 时间序列模型 pso-bp
在线阅读 下载PDF
A New Inversion-free Iterative Method for Solving the Nonlinear Matrix Equation and Its Application in Optimal Control
4
作者 GAO Xiangyu XIE Weiwei ZHANG Lina 《应用数学》 北大核心 2026年第1期143-150,共8页
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ... In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method. 展开更多
关键词 Nonlinear matrix equation Maximal positive definite solution Inversion-free iterative method Optimal control
在线阅读 下载PDF
Crushing evolution in pebble bed based on a novel method:a crushable DEM study
5
作者 Jian Wang Ming‑Zhun Lei +4 位作者 Ming‑Zong Liu Qi‑Gang Wu Zi‑Cong Cai Kai‑Song Wang Hai‑Shun Deng 《Nuclear Science and Techniques》 2026年第1期212-224,共13页
In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical m... In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing. 展开更多
关键词 Crushing behavior Granular material Discrete element method Pebble bed Fractal theory
在线阅读 下载PDF
A Deep Reinforcement Learning-Based Partitioning Method for Power System Parallel Restoration
6
作者 Changcheng Li Weimeng Chang +1 位作者 Dahai Zhang Jinghan He 《Energy Engineering》 2026年第1期243-264,共22页
Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision... Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training. 展开更多
关键词 Partitioning method parallel restoration deep reinforcement learning experience replay buffer partitioning modularity
在线阅读 下载PDF
An improved open-top dynamic chambers method for measuring the exchange fluxes of N_(2)O,NO and NH_(3) from farmland
7
作者 Minhang Tan Yining Hu +6 位作者 Yifei Song Zixuan Huang Yujing Mu Junfeng Liu Chenglong Zhang Pengfei Liu Yuanyuan Zhang 《Journal of Environmental Sciences》 2026年第1期535-545,共11页
The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environmen... The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environment and con-tribute to global climate change.However,there remain considerable research gaps in the accurate measurement of NCGs emissions from agricultural fields,hindering the development of effective emission reduction strategies.We improved an open-top dynamic chambers(OTDCs)system and evaluated the performance by comparing the measured and given fluxes of the NCGs.The results showed that the measured fluxes of NO,N_(2)O and NH_(3)were 1%,2%and 7%lower than the given fluxes,respectively.For the determination of NH_(3) concentration,we employed a stripping coil-ion chromatograph(SC-IC)analytical technique,which demonstrated an absorption efficiency for atmospheric NH_(3) exceeding 96.1%across sampling durations of 6 to 60 min.In the summer maize season,we utilized the OTDCs system to measure the exchange fluxes of NO,NH_(3),and N_(2)O from the soil in the North China Plain.Substantial emissions of NO,NH_(3) and N_(2)O were recorded following fertilization,with peaks of 107,309,1239 ng N/(m^(2)·s),respectively.Notably,significant NCGs emissions were observed following sus-tained heavy rainfall one month after fertilization,particularly with NH_(3) peak being 4.5 times higher than that observed immediately after fertilization.Our results demonstrate that the OTDCs system accurately reflects the emission characteristics of soil NCGs and meets the requirements for long-term and continuous flux observation. 展开更多
关键词 Open-top dynamic chambers Nitrogen-containing gases Soil emissions North China Plain method evaluation
原文传递
Numerical Simulation of the Welding Deformation of Marine Thin Plates Based on a Temperature Gradient-thermal Strain Method
8
作者 Lin Wang Yugang Miao +3 位作者 Zhenjian Zhuo Chunxiang Lin Benshun Zhang Duanfeng Han 《哈尔滨工程大学学报(英文版)》 2026年第1期122-135,共14页
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t... Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates. 展开更多
关键词 Marine thin plate Welding deformation Numerical simulation Temperature gradient-thermal strain method Shell element
在线阅读 下载PDF
Precision and trueness of a method for determing antimony content in groundwater using hydride generation-atomic fluorescence spectrometry
9
作者 Bing-bing Liu Lin Zhang Ke Li 《Journal of Groundwater Science and Engineering》 2026年第1期49-58,共10页
At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systema... At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systematically and quantitatively evaluated,which limits the effective implementation of environmental monitoring.In response to this key technical gap,this study aimed to establish a standardized method for determining antimony in groundwater using Hydride Generation–Atomic Fluorescence Spectrometry(HG-AFS).Ten laboratories participated in inter-laboratory collaborative tests,and the statistical analysis of the test data was carried out in strict accordance with the technical specifications of GB/T 6379.2—2004 and GB/T 6379.4—2006.The consistency and outliers of the data were tested by Mandel's h and k statistics,the Grubbs test and the Cochran test,and the outliers were removed to optimize the data,thereby significantly improving the reliability and accuracy.Based on the optimized data,parameters such as the repeatability limit(r),reproducibility limit(R),and method bias value(δ)were determined,and the trueness of the method was statistically evaluated.At the same time,precision-function relationships were established,and all results met the requirements.The results show that the lower the antimony content,the lower the repeatability limit(r)and reproducibility limit(R),indicating that the measurement error mainly originates from the detection limit of the method and instrument sensitivity.Therefore,improving the instrument sensitivity and reducing the detection limit are the keys to controlling the analytical error and improving precision.This study provides reliable data support and a solid technical foundation for the establishment and evaluation of standardized methods for the determination of antimony content in groundwater. 展开更多
关键词 Mandel's h and k statistics Grubbs test Cochran test Repeatability limit Reproducibility limit method bias value
在线阅读 下载PDF
基于PSO-BP神经网络高速公路建设期碳排放预测方法
10
作者 赵全胜 李斐 +4 位作者 郭风爱 于建游 徐士钊 胡运朋 褚晓萌 《河北科技大学学报》 北大核心 2025年第3期312-321,共10页
为了解决高速公路建设期碳排放预测不精准的问题,提出了粒子群优化(particle swarm optimization,PSO)算法优化BP(back propagation)神经网络预测碳排放的方法。采用层次分析法(analytic hierarchy process,AHP)从工程长度层、工程建设... 为了解决高速公路建设期碳排放预测不精准的问题,提出了粒子群优化(particle swarm optimization,PSO)算法优化BP(back propagation)神经网络预测碳排放的方法。采用层次分析法(analytic hierarchy process,AHP)从工程长度层、工程建设层、能源消耗层与材料消耗层4个维度凝练出路线长度、路基长度、路面长度、隧道长度、桥涵长度、互通区长度、挖方量、填方量、柴油消耗量、水泥消耗量、碎石消耗量和钢筋消耗量12个关键指标;获取36个高速公路项目数据作为模型训练的实证样本,结合误差指标进行对比分析。结果表明,所得PSO-BP模型R2为0.974,BP模型R2为0.890,前者更接近于1;与生命周期法结果相比较,PSO-BP比未优化的BP与真实值之间偏差更小。划分的4个维度层和选择的12个关键指标使得在高速公路设计规划阶段即可预测得到建设期的碳排放,为高速公路的低碳建设提供了参考。 展开更多
关键词 道路工程其他学科 碳排放预测 pso-bp神经网络 模型优化 因素分析
在线阅读 下载PDF
基于PSO-BP神经网络的风电功率短期预测
11
作者 马莉 刘嘉晨 《价值工程》 2025年第23期59-61,共3页
本文以风电功率短期预测为研究对象,对风电功率预测在当前能源结构中的作用及关键性进行了概括。运用BP神经网络结合粒子群优化算法构建预测模型,系统介绍了BP神经网络和PSO算法原理,模型构建章节详细介绍了PSO-BP神经网络模型结构设计... 本文以风电功率短期预测为研究对象,对风电功率预测在当前能源结构中的作用及关键性进行了概括。运用BP神经网络结合粒子群优化算法构建预测模型,系统介绍了BP神经网络和PSO算法原理,模型构建章节详细介绍了PSO-BP神经网络模型结构设计、参数优化以及训练学习过程,随后重点探讨了数据预处理与特征选择方法,包括了数据采集清洗、归一化处理等关键步骤。本研究模型可更加精准地完成风电功率短期预测工作,为风电产业的发展提供关键的技术支撑。 展开更多
关键词 风电功率预测 BP神经网络 粒子群优化 模型构建 pso-bp神经网络
在线阅读 下载PDF
沙柳平茬刀具减磨优化——基于PSO-BP神经网络结合GA算法 被引量:3
12
作者 韩志武 刘志刚 +3 位作者 常涛涛 裴承慧 张鹏峰 张建强 《农机化研究》 北大核心 2025年第8期259-265,共7页
沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬... 沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬试验获取不同锯齿结构下的磨损退化量数据,基于磨损数据建立PSO(Particle Swarm Optimization)算法优化的BP(Back Propagation)神经网络模型,用于预测圆锯片的磨损量;然后,将训练好的PSO-BP神经网络模型与GA(Genetic Algorithm)算法相结合,以磨损量最小为优化目标,寻找圆锯片锯齿结构的最优参数。结果表明:所建立的模型成功实现了对圆锯片前角、后角、前刀面斜磨角等结构参数的多目标优化,优化得到的圆锯片参数使磨损量相对最小,提升了圆锯片的减磨性能。由此为进一步改善沙柳平茬圆锯片的切削及减磨损性能提供了新的设计思路,为提高沙柳平茬工作效率提供了技术支持,有利于生态环境保护和农业可持续发展。 展开更多
关键词 沙柳 平茬圆锯片 减磨优化 pso-bp神经网络 遗传算法
在线阅读 下载PDF
基于PSO-BP模糊PID的变距取苗机构控制系统设计 被引量:5
13
作者 李润泽 王卫兵 李小军 《农机化研究》 北大核心 2025年第2期9-18,共10页
为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。... 为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。同时,为实现变距取苗机构的精确控制,提出了一种基于PSO-BP的模糊PID算法以提高控制精度,介绍了系统的结构与工作原理,并通过选型计算与分析建模建立了控制系统的数学模型。针对传统PID控制器稳定性差、响应速度慢等不足之处,利用PSO-BP模糊PID对控制器的参数进行在线调整,以满足控制过程中对参数的不同需求。仿真结果与试验数据的分析表明:在参数相同条件下,基于PSO-BP模糊PID控制系统系统稳定性更好、响应速度更快,具有良好的鲁棒性,提升取苗成功率的同时降低了基质损伤率,能够满足变距取苗机构高精度快速稳定控制的需求。 展开更多
关键词 变距取苗机构 pso-bp神经网络 模糊PID算法 控制系统
在线阅读 下载PDF
基于PSO-BP温度补偿算法的智能压力传感器设计 被引量:3
14
作者 张凌峰 丁晓宇 潘慕绚 《南京航空航天大学学报(自然科学版)》 北大核心 2025年第1期160-168,共9页
压力信号是表征航空发动机工作性能的重要物理量。本文针对压力信号的高精度测量需求,提出了一种基于PSO-BP温度补偿算法的智能压力传感器设计方案。选取微电子机械系统(Micro-electro-mechanical system,MEMS)压阻式传感器作为信号感知... 压力信号是表征航空发动机工作性能的重要物理量。本文针对压力信号的高精度测量需求,提出了一种基于PSO-BP温度补偿算法的智能压力传感器设计方案。选取微电子机械系统(Micro-electro-mechanical system,MEMS)压阻式传感器作为信号感知端,通过模块化思想设计智能压力传感器的硬件和软件构架。针对压力传感器敏感元件因温度漂移造成的精度偏差问题,提出了一种基于PSO-BP神经网络的嵌入式温度补偿算法以提升测量精度。集成智能传感器软硬件功能,为验证智能传感器在全工况范围内的精度,进行多种压力、温度下的压力测量实验。结果表明,本文设计的智能压力传感器经补偿后满量程误差最大值为0.44%(量程范围为0~4 MPa),相比于传统插值法、多项式拟合法等温度补偿算法,精度提升至少20%,且算法单次仅耗时2μs,具有工程应用价值。 展开更多
关键词 航空发动机 MEMS压阻式智能压力传感器 模数转换驱动 温度补偿 pso-bp神经网络
在线阅读 下载PDF
基于PSO-BP单晶金刚石刀具刃磨方向多信息融合在线识别
15
作者 冯雪雯 赵彬 +2 位作者 马海涛 吴佳玉 吉日嘎兰图 《科学技术与工程》 北大核心 2025年第7期2784-2791,共8页
为了提高单晶金刚石刀具刃磨方向在线识别精度,以及解决刃磨监测中单一传感器采集信息有限的问题,提出一种基于多信息融合与粒子群优化(particle swarm optimization, PSO)算法优化反向传播(back propagation, BP)神经网络的单晶金刚石... 为了提高单晶金刚石刀具刃磨方向在线识别精度,以及解决刃磨监测中单一传感器采集信息有限的问题,提出一种基于多信息融合与粒子群优化(particle swarm optimization, PSO)算法优化反向传播(back propagation, BP)神经网络的单晶金刚石刀具刃磨方向在线识别方法。通过采集刃磨过程中的振动信号和声发射(acoustic emission, AE)信号,采用小波包分解法分析刀具振动信号,得出与刀具刃磨方向强相关的特征频段,采用参数分析法来分析声发射信号,得出特征参数。将振动信号特征频段能量值和声发射信号特征参数作为识别刀具刃磨方向的特征参量。将特征参量作为BP神经网络模型输入进行融合,在线识别刀具刃磨方向。针对BP神经网络的容易陷入局部最小值的缺点,利用PSO算法优化神经网络权值和阈值,有效解决陷入局部最小值的问题。实验结果表明,经PSO-BP与多信息融合对单晶金刚石刀具刃磨方向在线识别准确率得到了有效提高,达到85%的准确率,为单晶金刚石刀具刃磨方向在线识别提供了一种新方法。 展开更多
关键词 单晶金刚石刀具 刃磨方向 多信息融合 在线识别 pso-bp
在线阅读 下载PDF
应用Sheorey模型结合PSO-BP神经网络高精度预测温泉井田地应力状态:以箐河矿温泉井田区为例
16
作者 贾强 罗棋耀 +3 位作者 赵超 阳伟 唐晓林 孙学阳 《科学技术与工程》 北大核心 2025年第26期11042-11050,共9页
在矿井建设过程中,深埋硐室常常面临高地应力聚集的问题,这种高地应力状态可能导致多种工程病害,如岩爆和软岩大变形等。地应力作为地下岩体和矿体变形、破坏的主要原动力,对岩体形变、工程稳定性等方面有重大影响。为了保障矿井建设的... 在矿井建设过程中,深埋硐室常常面临高地应力聚集的问题,这种高地应力状态可能导致多种工程病害,如岩爆和软岩大变形等。地应力作为地下岩体和矿体变形、破坏的主要原动力,对岩体形变、工程稳定性等方面有重大影响。为了保障矿井建设的顺利进行,准确掌握分析矿区地应力参数及其分布特征至关重要。在箐河矿区温泉井田勘查过程中,通过选择适当的钻探位置,开展钻探深孔内地应力的测试,获取地应力参数并分析其分布特征,为矿井下一步建设提供重要的设计依据。以温泉井田10-4钻孔水压致裂地应力实测成果为基础,利用改进后的Sheorey计算模型估算获取了矿区测试空白区的围岩地应力参数,通过粒子群算法PSO加优化的BP神经网络,高精度地应用于温泉井田地应力的多参识别。在此基础上,对矿井+1500 m水平运输大巷开挖过程中可能发生的硬质围岩岩爆现象和软质围岩变形情况进行了预测。通过分析地应力分布特征,能够有效预测可能出现的工程病害,可为矿井下一步工程施工与巷道支护设计提供重要依据。 展开更多
关键词 地应力 水压致裂法 Sheorey计算模型 pso-bp神经网络
在线阅读 下载PDF
Nonlinear Inversion for Complex Resistivity Method Based on QPSO-BP Algorithm 被引量:1
17
作者 Weixin Zhang Jinsuo Liu +1 位作者 Le Yu Biao Jin 《Open Journal of Geology》 2021年第10期494-508,共15页
The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to eff... The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to effectively invert these spectral parameters has become the focused area of the complex resistivity inversion. An optimized BP neural network (BPNN) approach based on Quantum Particle Swarm Optimization (QPSO) algorithm was presented, which was able to improve global search ability for complex resistivity multi-parameter nonlinear inversion. In the proposed method, the nonlinear weight adjustment strategy and mutation operator were used to enhance the optimization ability of QPSO algorithm. Implementation of proposed QPSO-BPNN was given, the network had 56 hidden neurons in two hidden layers (the first hidden layer has 46 neurons and the second hidden layer has 10 neurons) and it was trained on 48 datasets and tested on another 5 synthetic datasets. The training and test results show that BP neural network optimized by the QPSO algorithm performs better than the BP neural network without initial optimization on the inversion training and test models, and the mean square error distribution is better. At the same time, a double polarized anomalous bodies model was also used to verify the feasibility and effectiveness of the proposed method, the inversion results show that the QPSO-BP algorithm inversion clearly characterizes the anomalous boundaries and is closer to the values of the parameters. 展开更多
关键词 Complex Resistivity Finite Element method Nonlinear Inversion Qpso-bp Algorithm 2.5D Numerical Simulation
在线阅读 下载PDF
基于充电片段和PSO-BP的锂电池SOH在线估计方法 被引量:2
18
作者 何山 赵宇明 +1 位作者 田爱娜 姜久春 《电源技术》 北大核心 2025年第2期383-389,共7页
由于锂离子电池具有自放电率低、比能量大等优点,目前常被应用于动力系统中。但由于电池老化过程中内部反应过于复杂,具有非线性、强耦合等特性,且健康状态不能直接测量,因此准确估算电池健康状态较难,如何准确对电池健康状态估算成为... 由于锂离子电池具有自放电率低、比能量大等优点,目前常被应用于动力系统中。但由于电池老化过程中内部反应过于复杂,具有非线性、强耦合等特性,且健康状态不能直接测量,因此准确估算电池健康状态较难,如何准确对电池健康状态估算成为了电池领域内的研究热点。通过分析牛津大学实验室老化数据集,对温度和电压相关参数进行分析,发现随着循环的进行,温度变化率的斜率和等压升时间间隔变化的规律与容量的变换规律相同或者相反,因此提取温度和电压相关的参数作为健康特征。设计了一种基于粒子群优化-反向传播算法(PSO-BP)神经网络的电池健康状态估计模型,结果表明误差较小,在线估算误差能稳定在4%以内。 展开更多
关键词 锂离子电池 健康状态 pso-bp神经网络
在线阅读 下载PDF
Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations:A Review 被引量:5
19
作者 Chao Zhang Shang-Xi Lai Hua-Ping Wang 《Structural Durability & Health Monitoring》 EI 2025年第1期25-54,共30页
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi... Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems. 展开更多
关键词 Structural health monitoring data information modal parameters damage identification AI method
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部