期刊文献+
共找到282,862篇文章
< 1 2 250 >
每页显示 20 50 100
Nonlinear Inversion for Complex Resistivity Method Based on QPSO-BP Algorithm 被引量:1
1
作者 Weixin Zhang Jinsuo Liu +1 位作者 Le Yu Biao Jin 《Open Journal of Geology》 2021年第10期494-508,共15页
The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to eff... The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to effectively invert these spectral parameters has become the focused area of the complex resistivity inversion. An optimized BP neural network (BPNN) approach based on Quantum Particle Swarm Optimization (QPSO) algorithm was presented, which was able to improve global search ability for complex resistivity multi-parameter nonlinear inversion. In the proposed method, the nonlinear weight adjustment strategy and mutation operator were used to enhance the optimization ability of QPSO algorithm. Implementation of proposed QPSO-BPNN was given, the network had 56 hidden neurons in two hidden layers (the first hidden layer has 46 neurons and the second hidden layer has 10 neurons) and it was trained on 48 datasets and tested on another 5 synthetic datasets. The training and test results show that BP neural network optimized by the QPSO algorithm performs better than the BP neural network without initial optimization on the inversion training and test models, and the mean square error distribution is better. At the same time, a double polarized anomalous bodies model was also used to verify the feasibility and effectiveness of the proposed method, the inversion results show that the QPSO-BP algorithm inversion clearly characterizes the anomalous boundaries and is closer to the values of the parameters. 展开更多
关键词 Complex Resistivity Finite Element Method Nonlinear Inversion Qpso-bp algorithm 2.5D Numerical Simulation
在线阅读 下载PDF
Modeling of mechanical properties of as-cast Mg-Li-Al alloys based on PSO-BP algorithm 被引量:1
2
作者 Li Ming Hao Hai +3 位作者 Zhang Aimin Song Yingde Liu Zhao Zhang Xingguo 《China Foundry》 SCIE CAS 2012年第2期119-124,共6页
Artificial neural networks have been widely used to predict the mechanical properties of alloys in material research. This study aims to investigate the implicit relationship between the compositions and mechanical pr... Artificial neural networks have been widely used to predict the mechanical properties of alloys in material research. This study aims to investigate the implicit relationship between the compositions and mechanical properties of as-cast Mg-Li-AI alloys. Based on the experimental collection of the tensile strength and the elongation of representative Mg-Li-AI alloys, a momentum back-propagation (BP) neural network with a single hidden layer was established. Particle swarm optimization (PSO) was applied to optimize the BP model. In the neural network, the input variables were the contents of Mg, Li and AI, and the output variables were the tensile strength and the elongation. The results show that the proposed PSO-BP model can describe the quantitative relationship between the Mg-Li-AI alloy's composition and its mechanical properties. It is possible that the mechanical properties to be predicted without experiment by inputting the alloy composition into the trained network model. The prediction of the influence of AI addition on the mechanical properties of as-cast Mg-Li-AI alloys is consistent with the related research results. 展开更多
关键词 artificial neural networks Mg-Li-Al alloys BP algorithm particle swarm optimization mechanical properties
在线阅读 下载PDF
基于PSO-BP神经网络高速公路建设期碳排放预测方法
3
作者 赵全胜 李斐 +4 位作者 郭风爱 于建游 徐士钊 胡运朋 褚晓萌 《河北科技大学学报》 北大核心 2025年第3期312-321,共10页
为了解决高速公路建设期碳排放预测不精准的问题,提出了粒子群优化(particle swarm optimization,PSO)算法优化BP(back propagation)神经网络预测碳排放的方法。采用层次分析法(analytic hierarchy process,AHP)从工程长度层、工程建设... 为了解决高速公路建设期碳排放预测不精准的问题,提出了粒子群优化(particle swarm optimization,PSO)算法优化BP(back propagation)神经网络预测碳排放的方法。采用层次分析法(analytic hierarchy process,AHP)从工程长度层、工程建设层、能源消耗层与材料消耗层4个维度凝练出路线长度、路基长度、路面长度、隧道长度、桥涵长度、互通区长度、挖方量、填方量、柴油消耗量、水泥消耗量、碎石消耗量和钢筋消耗量12个关键指标;获取36个高速公路项目数据作为模型训练的实证样本,结合误差指标进行对比分析。结果表明,所得PSO-BP模型R2为0.974,BP模型R2为0.890,前者更接近于1;与生命周期法结果相比较,PSO-BP比未优化的BP与真实值之间偏差更小。划分的4个维度层和选择的12个关键指标使得在高速公路设计规划阶段即可预测得到建设期的碳排放,为高速公路的低碳建设提供了参考。 展开更多
关键词 道路工程其他学科 碳排放预测 pso-bp神经网络 模型优化 因素分析
在线阅读 下载PDF
沙柳平茬刀具减磨优化——基于PSO-BP神经网络结合GA算法 被引量:3
4
作者 韩志武 刘志刚 +3 位作者 常涛涛 裴承慧 张鹏峰 张建强 《农机化研究》 北大核心 2025年第8期259-265,共7页
沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬... 沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬试验获取不同锯齿结构下的磨损退化量数据,基于磨损数据建立PSO(Particle Swarm Optimization)算法优化的BP(Back Propagation)神经网络模型,用于预测圆锯片的磨损量;然后,将训练好的PSO-BP神经网络模型与GA(Genetic Algorithm)算法相结合,以磨损量最小为优化目标,寻找圆锯片锯齿结构的最优参数。结果表明:所建立的模型成功实现了对圆锯片前角、后角、前刀面斜磨角等结构参数的多目标优化,优化得到的圆锯片参数使磨损量相对最小,提升了圆锯片的减磨性能。由此为进一步改善沙柳平茬圆锯片的切削及减磨损性能提供了新的设计思路,为提高沙柳平茬工作效率提供了技术支持,有利于生态环境保护和农业可持续发展。 展开更多
关键词 沙柳 平茬圆锯片 减磨优化 pso-bp神经网络 遗传算法
在线阅读 下载PDF
基于PSO-BP模糊PID的变距取苗机构控制系统设计 被引量:4
5
作者 李润泽 王卫兵 李小军 《农机化研究》 北大核心 2025年第2期9-18,共10页
为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。... 为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。同时,为实现变距取苗机构的精确控制,提出了一种基于PSO-BP的模糊PID算法以提高控制精度,介绍了系统的结构与工作原理,并通过选型计算与分析建模建立了控制系统的数学模型。针对传统PID控制器稳定性差、响应速度慢等不足之处,利用PSO-BP模糊PID对控制器的参数进行在线调整,以满足控制过程中对参数的不同需求。仿真结果与试验数据的分析表明:在参数相同条件下,基于PSO-BP模糊PID控制系统系统稳定性更好、响应速度更快,具有良好的鲁棒性,提升取苗成功率的同时降低了基质损伤率,能够满足变距取苗机构高精度快速稳定控制的需求。 展开更多
关键词 变距取苗机构 pso-bp神经网络 模糊PID算法 控制系统
在线阅读 下载PDF
基于PSO-BP神经网络模型的浸胶竹束干燥过程含水率预测 被引量:1
6
作者 王晓曼 吕建雄 +5 位作者 李贤军 吴义强 李新功 郝晓峰 乔建政 徐康 《林业科学》 北大核心 2025年第5期187-198,共12页
【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测... 【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测数据,以干燥温度、干燥时间、铺装方式和初始含水率为输入变量,干燥过程含水率为输出变量,制作数据集。将数据集划分为训练集(308个测试数据,占总数据量的70%)、验证集(66个测试数据,占总数据量的15%)和测试集(66个测试数据,占总数据量的15%),采用粒子群优化算法(PSO)优化反向传播(BP)神经网络初始权重与阈值,构建PSO-BP神经网络预测模型,并进行验证分析。【结果】PSO-BP神经网络模型具有较强的预测能力,在模型测试集中,决定系数(R^(2))、均方误差(MSE)、平均绝对误差(MAE)和剩余预测残差(RPD)分别达0.98、1.27、3.73和7.96。相较BP神经网络,PSO-BP神经网络的R^(2)和RPD分别提高6.53%和110.2%,MSE和MAE分别降低54.0%和71.86%。模型验证表明,干燥温度和铺装方式是影响浸胶竹束干燥过程含水率变化的主要因素,二者对PSO-BP神经网络模型预测结果影响显著。干燥温度为60℃时,在4种不同铺装方式下PSO-BP神经网络模型展现出较好预测效果,其R^(2)均超过0.969且MSE均低于3;铺装层数为3时,在4种不同干燥温度下PSO-BP神经网络模型表现最佳,其R^(2)均超过0.99且MSE均低于2。干燥时间和浸胶竹束初始含水率对PSO-BP神经网络模型预测结果影响不显著。【结论】PSO-BP神经网络模型在浸胶竹束干燥过程含水率预测中表现出准确性,可有效解决传统BP神经网络预测误差大、收敛速度慢等问题,为浸胶竹束高质高效干燥提供技术支撑。 展开更多
关键词 浸胶竹束 干燥 含水率 粒子群优化算法 反向传播 神经网络
在线阅读 下载PDF
基于PSO-BP神经网络的风电功率短期预测
7
作者 马莉 刘嘉晨 《价值工程》 2025年第23期59-61,共3页
本文以风电功率短期预测为研究对象,对风电功率预测在当前能源结构中的作用及关键性进行了概括。运用BP神经网络结合粒子群优化算法构建预测模型,系统介绍了BP神经网络和PSO算法原理,模型构建章节详细介绍了PSO-BP神经网络模型结构设计... 本文以风电功率短期预测为研究对象,对风电功率预测在当前能源结构中的作用及关键性进行了概括。运用BP神经网络结合粒子群优化算法构建预测模型,系统介绍了BP神经网络和PSO算法原理,模型构建章节详细介绍了PSO-BP神经网络模型结构设计、参数优化以及训练学习过程,随后重点探讨了数据预处理与特征选择方法,包括了数据采集清洗、归一化处理等关键步骤。本研究模型可更加精准地完成风电功率短期预测工作,为风电产业的发展提供关键的技术支撑。 展开更多
关键词 风电功率预测 BP神经网络 粒子群优化 模型构建 pso-bp神经网络
在线阅读 下载PDF
基于PSO-BP温度补偿算法的智能压力传感器设计 被引量:3
8
作者 张凌峰 丁晓宇 潘慕绚 《南京航空航天大学学报(自然科学版)》 北大核心 2025年第1期160-168,共9页
压力信号是表征航空发动机工作性能的重要物理量。本文针对压力信号的高精度测量需求,提出了一种基于PSO-BP温度补偿算法的智能压力传感器设计方案。选取微电子机械系统(Micro-electro-mechanical system,MEMS)压阻式传感器作为信号感知... 压力信号是表征航空发动机工作性能的重要物理量。本文针对压力信号的高精度测量需求,提出了一种基于PSO-BP温度补偿算法的智能压力传感器设计方案。选取微电子机械系统(Micro-electro-mechanical system,MEMS)压阻式传感器作为信号感知端,通过模块化思想设计智能压力传感器的硬件和软件构架。针对压力传感器敏感元件因温度漂移造成的精度偏差问题,提出了一种基于PSO-BP神经网络的嵌入式温度补偿算法以提升测量精度。集成智能传感器软硬件功能,为验证智能传感器在全工况范围内的精度,进行多种压力、温度下的压力测量实验。结果表明,本文设计的智能压力传感器经补偿后满量程误差最大值为0.44%(量程范围为0~4 MPa),相比于传统插值法、多项式拟合法等温度补偿算法,精度提升至少20%,且算法单次仅耗时2μs,具有工程应用价值。 展开更多
关键词 航空发动机 MEMS压阻式智能压力传感器 模数转换驱动 温度补偿 pso-bp神经网络
在线阅读 下载PDF
基于PSO-BP神经网络的角接触球轴承凸出量预测
9
作者 章如意 段玥晨 +1 位作者 张瑞 赵明辉 《传感器与微系统》 北大核心 2025年第9期134-137,143,共5页
针对人工测量角接触球轴承的凸出量,对轴承进行配对效率较低的问题,提出了基于粒子群优化(PSO)—反向传播(BP)神经网络的角接触球轴承凸出量预测方法。根据200组实验数据,通过灰色关联度分析,选取了角接触球轴承内外圈的宽度、沟位、沟... 针对人工测量角接触球轴承的凸出量,对轴承进行配对效率较低的问题,提出了基于粒子群优化(PSO)—反向传播(BP)神经网络的角接触球轴承凸出量预测方法。根据200组实验数据,通过灰色关联度分析,选取了角接触球轴承内外圈的宽度、沟位、沟径和沟道曲率半径作为建模数据集,分别利用BP神经网络、遗传算法(GA)—BP神经网络、PSO-BP神经网络建立角接触球轴承凸出量预测模型。结果表明:PSO-BP神经网络预测模型预测效果最好,决定系数(R^(2))达0.986 3,整体误差≤±0.70%,能够较为准确地预测角接触球轴承的凸出量,提高轴承的配对效率。 展开更多
关键词 角接触球轴承 凸出量 灰色关联度分析 反向传播神经网络 遗传算法 粒子群优化算法
在线阅读 下载PDF
基于PSO-BP单晶金刚石刀具刃磨方向多信息融合在线识别
10
作者 冯雪雯 赵彬 +2 位作者 马海涛 吴佳玉 吉日嘎兰图 《科学技术与工程》 北大核心 2025年第7期2784-2791,共8页
为了提高单晶金刚石刀具刃磨方向在线识别精度,以及解决刃磨监测中单一传感器采集信息有限的问题,提出一种基于多信息融合与粒子群优化(particle swarm optimization, PSO)算法优化反向传播(back propagation, BP)神经网络的单晶金刚石... 为了提高单晶金刚石刀具刃磨方向在线识别精度,以及解决刃磨监测中单一传感器采集信息有限的问题,提出一种基于多信息融合与粒子群优化(particle swarm optimization, PSO)算法优化反向传播(back propagation, BP)神经网络的单晶金刚石刀具刃磨方向在线识别方法。通过采集刃磨过程中的振动信号和声发射(acoustic emission, AE)信号,采用小波包分解法分析刀具振动信号,得出与刀具刃磨方向强相关的特征频段,采用参数分析法来分析声发射信号,得出特征参数。将振动信号特征频段能量值和声发射信号特征参数作为识别刀具刃磨方向的特征参量。将特征参量作为BP神经网络模型输入进行融合,在线识别刀具刃磨方向。针对BP神经网络的容易陷入局部最小值的缺点,利用PSO算法优化神经网络权值和阈值,有效解决陷入局部最小值的问题。实验结果表明,经PSO-BP与多信息融合对单晶金刚石刀具刃磨方向在线识别准确率得到了有效提高,达到85%的准确率,为单晶金刚石刀具刃磨方向在线识别提供了一种新方法。 展开更多
关键词 单晶金刚石刀具 刃磨方向 多信息融合 在线识别 pso-bp
在线阅读 下载PDF
基于改进PSO-BP神经网络的Ni-TiC复合镀层工艺参数优化方法
11
作者 李学威 王兆浩 《电镀与精饰》 北大核心 2025年第8期76-82,共7页
在Ni-TiC复合镀层的制备过程中,由于受到参数非线性波动以及多参数间复杂作用关系的影响,其镀层制备效果不佳。为达到理想的镀层效果,本次借助脉冲负荷电沉积法制备Ni-TiC复合镀层环境,开展基于改进粒子群优化-反向传播(Particle Swarm ... 在Ni-TiC复合镀层的制备过程中,由于受到参数非线性波动以及多参数间复杂作用关系的影响,其镀层制备效果不佳。为达到理想的镀层效果,本次借助脉冲负荷电沉积法制备Ni-TiC复合镀层环境,开展基于改进粒子群优化-反向传播(Particle Swarm Optimization Backpropagation,PSO-BP)神经网络的Ni-TiC复合镀层工艺参数优化方法研究。先对Ni-TiC复合镀层工艺进行分析,探讨TiC粒子浓度、电流密度以及pH值三种工艺参数的影响,然后以此为基础,设计正交试验,开展对Ni-TiC复合镀层工艺参数的初步优化,最后以得到的正交试验结果为输入,采用BP神经网络完成Ni-TiC复合镀层工艺参数优化模型的构建与训练设计,应用改进PSO算法完成BP神经网络模型参数寻优,实现Ni-TiC复合镀层工艺参数优化。实验结果表明:应用该方法,可以实现Ni-TiC复合镀层的制备工艺参数优化,采用优化后的工艺制备的复合镀层的耐腐蚀能力更强。 展开更多
关键词 改进PSO算法 BP神经网络 Ni-TiC复合镀层 工艺参数优化 正交实验 脉冲负荷电沉积方法
在线阅读 下载PDF
基于PSO-BP混合算法的风电功率预测研究 被引量:2
12
作者 王文欣 刘霁萱 施振雷 《无线互联科技》 2025年第7期111-114,共4页
针对短期风电功率的多样性与非平稳特性,传统预测模型在时空特征提取方面存在明显局限性。现有方法对风电场历史运行数据的时空耦合特性挖掘不足,难以有效捕捉其动态演化规律与潜在特征关联,导致预测精度难以满足电网调度的实际需求。... 针对短期风电功率的多样性与非平稳特性,传统预测模型在时空特征提取方面存在明显局限性。现有方法对风电场历史运行数据的时空耦合特性挖掘不足,难以有效捕捉其动态演化规律与潜在特征关联,导致预测精度难以满足电网调度的实际需求。为改善这一现状,文章提出一种基于粒子群优化算法(Particle Swarm Optimization,PSO)与反向传播神经网络(Backpropagation,BP)的混合预测框架。在该算法结构中,每个粒子对应一个网络参数组合的潜在解,通过迭代寻优机制动态更新粒子的运动轨迹,其速度向量和空间坐标依据个体最优值与群体最优值进行自适应调整。实证分析表明,文章提出的粒子群优化-反向传播神经网络混合算法(Particle Swarm Optimization-Backpropagation Neural Network Hybrid Algorithm,PSO-BP)在预测性能上具有显著优势。通过引入粒子群优化算法进行参数寻优,可有效改善神经网络陷入局部最优的问题,从而提升风电功率预测的准确性与稳定性。 展开更多
关键词 BP神经网络 pso-bp混合算法 短期风电功率预测
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:3
13
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 BP神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
基于充电片段和PSO-BP的锂电池SOH在线估计方法 被引量:2
14
作者 何山 赵宇明 +1 位作者 田爱娜 姜久春 《电源技术》 北大核心 2025年第2期383-389,共7页
由于锂离子电池具有自放电率低、比能量大等优点,目前常被应用于动力系统中。但由于电池老化过程中内部反应过于复杂,具有非线性、强耦合等特性,且健康状态不能直接测量,因此准确估算电池健康状态较难,如何准确对电池健康状态估算成为... 由于锂离子电池具有自放电率低、比能量大等优点,目前常被应用于动力系统中。但由于电池老化过程中内部反应过于复杂,具有非线性、强耦合等特性,且健康状态不能直接测量,因此准确估算电池健康状态较难,如何准确对电池健康状态估算成为了电池领域内的研究热点。通过分析牛津大学实验室老化数据集,对温度和电压相关参数进行分析,发现随着循环的进行,温度变化率的斜率和等压升时间间隔变化的规律与容量的变换规律相同或者相反,因此提取温度和电压相关的参数作为健康特征。设计了一种基于粒子群优化-反向传播算法(PSO-BP)神经网络的电池健康状态估计模型,结果表明误差较小,在线估算误差能稳定在4%以内。 展开更多
关键词 锂离子电池 健康状态 pso-bp神经网络
在线阅读 下载PDF
应用Sheorey模型结合PSO-BP神经网络高精度预测温泉井田地应力状态:以箐河矿温泉井田区为例
15
作者 贾强 罗棋耀 +3 位作者 赵超 阳伟 唐晓林 孙学阳 《科学技术与工程》 北大核心 2025年第26期11042-11050,共9页
在矿井建设过程中,深埋硐室常常面临高地应力聚集的问题,这种高地应力状态可能导致多种工程病害,如岩爆和软岩大变形等。地应力作为地下岩体和矿体变形、破坏的主要原动力,对岩体形变、工程稳定性等方面有重大影响。为了保障矿井建设的... 在矿井建设过程中,深埋硐室常常面临高地应力聚集的问题,这种高地应力状态可能导致多种工程病害,如岩爆和软岩大变形等。地应力作为地下岩体和矿体变形、破坏的主要原动力,对岩体形变、工程稳定性等方面有重大影响。为了保障矿井建设的顺利进行,准确掌握分析矿区地应力参数及其分布特征至关重要。在箐河矿区温泉井田勘查过程中,通过选择适当的钻探位置,开展钻探深孔内地应力的测试,获取地应力参数并分析其分布特征,为矿井下一步建设提供重要的设计依据。以温泉井田10-4钻孔水压致裂地应力实测成果为基础,利用改进后的Sheorey计算模型估算获取了矿区测试空白区的围岩地应力参数,通过粒子群算法PSO加优化的BP神经网络,高精度地应用于温泉井田地应力的多参识别。在此基础上,对矿井+1500 m水平运输大巷开挖过程中可能发生的硬质围岩岩爆现象和软质围岩变形情况进行了预测。通过分析地应力分布特征,能够有效预测可能出现的工程病害,可为矿井下一步工程施工与巷道支护设计提供重要依据。 展开更多
关键词 地应力 水压致裂法 Sheorey计算模型 pso-bp神经网络
在线阅读 下载PDF
基于模糊PCA-PSO-BP神经网络的桥梁拆除方案评价研究
16
作者 顾瑞 李鹏 +1 位作者 王康 常丁 《建筑技术》 2025年第24期3061-3065,共5页
为实现复杂因素影响下桥梁拆除方案的科学评价,本研究在系统分析桥梁拆除工艺及其影响因素的基础上,构建了包含5个一级指标和18个二级指标的评价体系。通过主成分分析(PCA)对评价指标数据进行降维处理,有效简化了多维度决策问题。基于... 为实现复杂因素影响下桥梁拆除方案的科学评价,本研究在系统分析桥梁拆除工艺及其影响因素的基础上,构建了包含5个一级指标和18个二级指标的评价体系。通过主成分分析(PCA)对评价指标数据进行降维处理,有效简化了多维度决策问题。基于降维数据建立了PCA-PSO-BP神经网络评价模型,并采用工程实测数据完成模型训练与验证。结果表明:PCA-PSO-BP预测模型的平均百分比误差为1.33%,均方误差降低至1.62,相较于传统BP神经网络模型分别下降了60%、70%,显著提升了复杂桥梁拆除方案评价的可靠性与计算效率。 展开更多
关键词 桥梁工程 层次分析法 PCA分析 BP神经网络 PSO优化算法
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
17
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
18
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Logratio变换与PSO-BP神经网络在多目标混料设计药物处方配比优化中的应用
19
作者 李一汀 乔宇超 +6 位作者 王旭春 任家辉 崔宇 赵执扬 刘静 赵瑞青 仇丽霞 《中国卫生统计》 北大核心 2025年第1期44-49,共6页
目的研究Logratio变换、PSO-BP神经网络及改进非劣分类遗传算法(NSGA-Ⅱ)在药物处方配比优化中的应用,为药物混料设计的优化问题提供科学、合理的方法。方法针对复方甘草微乳混料试验数据,先对数据进行Logratio变换,之后以微乳粒径和有... 目的研究Logratio变换、PSO-BP神经网络及改进非劣分类遗传算法(NSGA-Ⅱ)在药物处方配比优化中的应用,为药物混料设计的优化问题提供科学、合理的方法。方法针对复方甘草微乳混料试验数据,先对数据进行Logratio变换,之后以微乳粒径和有效成分皮肤滞留量两个评价指标为输出构建PSO-BP神经网络模型,再以PSO-BP为适应度函数采用NSGA-Ⅱ进行多目标寻优,最后将本文优化方案与原文优化方案进行比较。结果以粒径和有效成分皮肤滞留量作为输出的PSO-BP神经网络拟合模型的决定系数分别为R^(2)=0.97298和R^(2)=0.96334,且与原文使用的Scheffe多项式模型相比拟合效果更好。采用NSGA-Ⅱ优化目标函数所得3、4、6、7、10、11等方案的复方甘草微乳制备效果均优于原文方案,其中3号方案与原文方案相比,微乳粒径减小了3.02 nm,有效成分皮肤滞留量提高了18.31μg。结论将Logratio变换和PSO-BP神经网络结合应用于混料设计所得试验数据的模型构建中,并采用NSGA-Ⅱ获得最佳的药物处方配比,理论是可行且合理的。 展开更多
关键词 混料设计 Logratio变换 pso-bp神经网络 改进非劣分类遗传算法
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部