期刊文献+
共找到108,304篇文章
< 1 2 250 >
每页显示 20 50 100
一种基于改进PSO算法的新型电力系统负荷波动柔性控制
1
作者 王超 《自动化技术与应用》 2026年第1期157-160,共4页
由于当下电力需求的季节性、时段性等特点,导致电力需求在时间上存在差异,使得供需不匹配,造成供需矛盾。为此,柔性负荷调节成为解决供需矛盾的主要手段之一。为提高电力系统的稳定性和可靠性,研究一种基于改进PSO算法的新型电力系统负... 由于当下电力需求的季节性、时段性等特点,导致电力需求在时间上存在差异,使得供需不匹配,造成供需矛盾。为此,柔性负荷调节成为解决供需矛盾的主要手段之一。为提高电力系统的稳定性和可靠性,研究一种基于改进PSO算法的新型电力系统负荷波动柔性控制方法。研究分为两个部分,前一部分将电压偏离量作为稳定性目标,将控制成本作为经济性目标,由二者构建新型电力系统负荷波动柔性控制多目标函数;后一部分利用细菌觅食优化算法改进PSO算法,利用改进PSO算法对多目标函数进行求解,得出新型电力系统负荷波动柔性控制方案。结果表明,控制前新型电力系统的负荷在[85 MW~400 MW]之间波动,用所研究方法控制后,负荷波动范围在[218 MW~258 MW]之间,二者相比,波动范围缩小,由此证明了所研究方法的控制性能佳。 展开更多
关键词 改进pso算法 新型电力系统 负荷波动 柔性控制方法 细菌觅食优化算法
在线阅读 下载PDF
基于改进PSO的煤矿井下机车运输路径优化调度
2
作者 刘登科 张宏伟 《现代电子技术》 北大核心 2026年第2期142-148,共7页
煤矿井下机车作为煤矿井下运输物料矸石工作的主要工具,其运输调度工作影响着煤矿企业生产效率,而传统调度方式主要以人工操作为主,运输效率较低。为提升井下机车运输效率,针对现有的煤矿井下辅助运输调度工作特点与实际调度需求,提出... 煤矿井下机车作为煤矿井下运输物料矸石工作的主要工具,其运输调度工作影响着煤矿企业生产效率,而传统调度方式主要以人工操作为主,运输效率较低。为提升井下机车运输效率,针对现有的煤矿井下辅助运输调度工作特点与实际调度需求,提出一种基于改进粒子群优化(PSO)算法的机车最优调度路径求解方案。该方案以运输原则为约束,构建以最小总运输距离为优化目标的调度模型,为井下机车调度工作提供理论支撑。再对基于改进粒子群优化算法的调度算法进一步优化,通过引入遗传算法(GA)中的交叉变异操作来增强空间粒子的多样性与寻优能力,最终得到最优调度路径。通过Matlab 2022b软件搭建了仿真平台,以首山一矿井下运输矸石实际生产数据为背景,对该算法进行了仿真实验。实验结果表明,所提出的智能井下机车调度算法规划的运输路径更具合理性,不仅提高了机车资源利用率,还显著提升了井下辅助运输作业的整体效率。 展开更多
关键词 井下辅助运输 机车调度 数学模型 改进pso算法 GA 最短路径
在线阅读 下载PDF
融合敏感度-机理的MOPSO铣削工艺参数增效优化
3
作者 黄晓燕 赵家康 +2 位作者 马俊燕 廖小平 鲁娟 《制造技术与机床》 北大核心 2026年第1期114-121,153,共9页
现有加工过程的多目标优化方法未能有效利用工艺参数的敏感度与机理信息,易陷入局部最优且解集多样性不足。为此,文章提出基于敏感度-机理信息驱动的多目标粒子群优化(sensitivity-mechanism integrated multi-objective particle swarm... 现有加工过程的多目标优化方法未能有效利用工艺参数的敏感度与机理信息,易陷入局部最优且解集多样性不足。为此,文章提出基于敏感度-机理信息驱动的多目标粒子群优化(sensitivity-mechanism integrated multi-objective particle swarm optimization, SMG-MOPSO)算法回归模型与经验公式,以构建表面粗糙度Ra、切削力F_(c)和材料去除率(material removal rate,MRR)预测模型;通过敏感度函数、主效应与交互作用分析,揭示工艺参数对优化目标的影响规律;在此基础上,针对MOPSO设计三项机制,即基于敏感度函数与机理趋势的自适应步长调节、融合敏感度导向与机理修正的速度更新、引入机理一致性的解集维护,以增强解集效果。铣削试验验证表明,所提方法在满足Ra与F_(c)约束的前提下,MRR提高24.40%,验证了该方法的有效性及工程应用潜力。 展开更多
关键词 铣削加工 粒子群优化 自适应机制 机理信息 敏感度函数
在线阅读 下载PDF
基于特征优选与IPSO-LSTM的变压器故障诊断
4
作者 胡俊泽 杨耿煌 +1 位作者 耿丽清 刘新宇 《电气传动》 2026年第1期89-96,共8页
针对变压器故障诊断精度差、准确率低的问题,提出一种基于数据特征优选与改进粒子群优化算法的长短期记忆网络(IPSO-LSTM)的变压器故障诊断方法。首先对原始数据集进行预处理,使用合成少数类样本过采样技术(SMOTE)扩充数据数量;其次利... 针对变压器故障诊断精度差、准确率低的问题,提出一种基于数据特征优选与改进粒子群优化算法的长短期记忆网络(IPSO-LSTM)的变压器故障诊断方法。首先对原始数据集进行预处理,使用合成少数类样本过采样技术(SMOTE)扩充数据数量;其次利用特征比值法扩充特征维数至20维,使用随机森林(RF)算法判断特征重要程度进行特征优选,降低过拟合风险;然后引入自适应惯性权重对PSO算法进行改进,利用改进后的PSO算法来优化LSTM最优超参数;最后输入特征优选后的数据进行变压器故障诊断。结果表明所构建的故障诊断模型诊断精度为91.6%。该优化模型与LSTM,HBA-LSTM和PSO-LSTM诊断模型相比,准确率分别提高了10.12%,5.95%,3.57%,证明IPSO-LSTM诊断模型有更高的诊断准确率,在变压器故障诊断领域有一定的实际意义。 展开更多
关键词 变压器故障诊断 特征优选 随机森林 长短期记忆网络 粒子群优化算法
在线阅读 下载PDF
Decreasing the mechanical anisotropy of the forged Mg-8.5Gd-2.5Y-1.5Zn-0.5Zr alloy by modulating blocky LPSO particles using multi-directional forging
5
作者 Jiyu Li Fulin Wang +6 位作者 Jian Zeng Chaoyu Zhao Chen Qian Fenghua Wang Shuai Dong Li Jin Jie Dong 《Journal of Magnesium and Alloys》 2025年第4期1495-1505,共11页
The blocky LPSO particles were modulated by single-directional and multi-directional forging,and the effect of blocky LPSO particles on the anisotropy of mechanical properties of Mg-8.5Gd-2.5Y-1.5Zn-0.5Zr alloy forged... The blocky LPSO particles were modulated by single-directional and multi-directional forging,and the effect of blocky LPSO particles on the anisotropy of mechanical properties of Mg-8.5Gd-2.5Y-1.5Zn-0.5Zr alloy forged parts was investigated.In the present work,3D processing maps are established,and the forming domain that is both stable and power efficient is in the temperature range from 430 to 500℃ and strain rate range from 0.001 to 0.06 s^(-1),which is used to guide the single-directional forging(SDF)and multi-directional forging(MDF)experiments.The tensile mechanical properties reveal that the blocky LPSO particles have an influence on the mechanical anisotropy,especially in terms of the elongation anisotropy.The blocky LPSO particles after the MDF process have a more regular shape and smaller size and are homogeneously distributed,which is responsible for the low anisotropy of the elongation.In addition,the age-hardening capability of the MDF part is higher than that of the SDF part. 展开更多
关键词 Mg-Gd-Y-Zn-Zr alloy Blocky Lpso particles Mechanical anisotropy
在线阅读 下载PDF
基于改进PSO-OTSU的图像分割算法研究
6
作者 吕途 陈一言 +1 位作者 段豪 韩伟 《技术与市场》 2026年第1期13-17,共5页
为解决传统阈值分割方法(最大类间方差法)在图像阈值分割中存在空间和时间复杂度高、实时性差的问题,提出了一种改进惯性权重的粒子群优化(particle swarm optimization,PSO)算法与传统最大类间方差法(OTSU)相结合的图像阈值分割算法。... 为解决传统阈值分割方法(最大类间方差法)在图像阈值分割中存在空间和时间复杂度高、实时性差的问题,提出了一种改进惯性权重的粒子群优化(particle swarm optimization,PSO)算法与传统最大类间方差法(OTSU)相结合的图像阈值分割算法。为了证明提出的方法对图像分割的效果相较于传统OTSU更优,通过MATLAB软件平台搭建仿真模型,将该算法和传统算法对同一组图片进行单阈值和二阈值阈值分割,将二者的分割结果(运行时间、峰值信噪比、平均结构相似性指数)进行对比。结果表明:该方法相较于传统阈值分割方法阈值分割的运行时间更短、峰值信噪比(peak signal-to-noise ratio,PSNR)更大和平均结构相似性指数(mean structural similarity index,MSSIM)值更接近于1。可见,此本文提出的算法相较于传统算法能够更快更优地对图像进行分割,有效解决了传统方法空间和时间复杂度高、实时性差的问题。 展开更多
关键词 最大类间方差法(OTSU) 改进惯性权重 粒子群优化(pso)算法 峰值信噪比(PSNR) 平均结构相似性指数(MSSIM)
在线阅读 下载PDF
基于PSO-BP神经网络的热电厂负荷预测策略研究
7
作者 胡旭 米欣 曹琦 《科技创新与应用》 2026年第1期32-35,共4页
目前能源的高效利用和绿色发展受到学者们广泛的关注。该文针对某热电厂能源管理系统产生的大量历史数据,采用大数据分析的方法计算出数据之间的关联系数,以判断数据间的关联状况。建立PSO-BP神经网络模型对某热电厂未来24 h的热负荷进... 目前能源的高效利用和绿色发展受到学者们广泛的关注。该文针对某热电厂能源管理系统产生的大量历史数据,采用大数据分析的方法计算出数据之间的关联系数,以判断数据间的关联状况。建立PSO-BP神经网络模型对某热电厂未来24 h的热负荷进行预测,以便为热电厂更好地提供生产、运营、管理决策服务等。PSO-BP神经网络模型是将粒子群算法与BP算法融合产生的,不仅能够提高BP神经网络的预测精度,而且可以有效地解决BP神经网络算法学习速度慢及易陷入局部极小值、稳定性差等问题。 展开更多
关键词 大数据分析 用热特性 预测模型 pso-BP神经网络 预测精度
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
8
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
基于PSO-BP神经网络的硅基光子器件光损耗异常监测系统
9
作者 闵月淇 谢亮 《现代电子技术》 北大核心 2026年第2期49-53,共5页
硅基光子器件的光损耗易受多种运行参数影响,导致其光损耗异常监测存在偏差或遗漏。为全面考虑多种运行参数的影响,实现对其光损耗异常的全面精准监测,设计一种基于PSO-BP神经网络的硅基光子器件光损耗异常监测系统。采用系统的数据采... 硅基光子器件的光损耗易受多种运行参数影响,导致其光损耗异常监测存在偏差或遗漏。为全面考虑多种运行参数的影响,实现对其光损耗异常的全面精准监测,设计一种基于PSO-BP神经网络的硅基光子器件光损耗异常监测系统。采用系统的数据采集模块实时采集硅基光子器件的波长、温度等运行参数,再通过数据预处理模块对各参数进行处理,并输入以PSO-BP神经网络为核心的光损耗检测模块,从而获得各种运行参数下的光损耗检测值。异常监测预警模块将所得光损耗检测值与设定阈值进行对比,判断光损耗是否异常,若异常则发出预警。用户交互模块呈现异常监测及预警信息,完成硅基光子器件光损耗异常监测。结果表明,所设计系统可针对不同波长、温度、波导长度及输出光功率等运行参数,实现对硅基光子器件光损耗异常的全面监测,并对各种异常光损耗场景进行有效预警。 展开更多
关键词 硅基光子器件 光损耗 异常监测 pso-BP神经网络 异常预警 波导长度
在线阅读 下载PDF
基于PSO-SVR模型和分级变量选择的思茅松地上生物量估测研究
10
作者 于志博 陈大鹏 罗洪斌 《西南林业大学学报(自然科学)》 北大核心 2026年第1期141-148,共8页
基于哨兵2(Sentinel–2A)遥感数据,利用粒子群优化算法(PSO)优化支持向量回归(SVR)模型的惩罚参数(C)和核函数参数(γ),提高AGB反演精度。在变量选择过程中,采用分级变量选择方法,按照皮尔逊相关系数的绝对值排序,并构建不同变量组合的... 基于哨兵2(Sentinel–2A)遥感数据,利用粒子群优化算法(PSO)优化支持向量回归(SVR)模型的惩罚参数(C)和核函数参数(γ),提高AGB反演精度。在变量选择过程中,采用分级变量选择方法,按照皮尔逊相关系数的绝对值排序,并构建不同变量组合的SVR和PSO–SVR模型,探讨特征选择对模型性能的影响。结果表明:通过五折交叉验证评估模型的泛化能力后,选择前10%分级变量的PSO–SVR模型表现最佳,其R^(2)为0.989,RMSE为4.623 t/hm^(2),显著优于传统SVR模型(R^(2)=0.813,RMSE=18.697 t/hm^(2))。随着变量数量增加,模型精度下降,所有变量参与建模时,PSO–SVR的R^(2)降至0.311,RMSE增至35.831 t/hm^(2),表明冗余变量的引入会削弱模型的预测能力。综上所述,PSO优化SVR参数的有效性得到了验证,合理的变量筛选与优化算法结合可显著提高AGB估测精度。 展开更多
关键词 粒子群优化算法 支持向量回归 地上生物量 思茅松 机器学习
在线阅读 下载PDF
A Q-Learning Improved Particle Swarm Optimization for Aircraft Pulsating Assembly Line Scheduling Problem Considering Skilled Operator Allocation
11
作者 Xiaoyu Wen Haohao Liu +6 位作者 Xinyu Zhang Haoqi Wang Yuyan Zhang Guoyong Ye Hongwen Xing Siren Liu Hao Li 《Computers, Materials & Continua》 2026年第1期1503-1529,共27页
Aircraft assembly is characterized by stringent precedence constraints,limited resource availability,spatial restrictions,and a high degree of manual intervention.These factors lead to considerable variability in oper... Aircraft assembly is characterized by stringent precedence constraints,limited resource availability,spatial restrictions,and a high degree of manual intervention.These factors lead to considerable variability in operator workloads and significantly increase the complexity of scheduling.To address this challenge,this study investigates the Aircraft Pulsating Assembly Line Scheduling Problem(APALSP)under skilled operator allocation,with the objective of minimizing assembly completion time.A mathematical model considering skilled operator allocation is developed,and a Q-Learning improved Particle Swarm Optimization algorithm(QLPSO)is proposed.In the algorithm design,a reverse scheduling strategy is adopted to effectively manage large-scale precedence constraints.Moreover,a reverse sequence encoding method is introduced to generate operation sequences,while a time decoding mechanism is employed to determine completion times.The problem is further reformulated as a Markov Decision Process(MDP)with explicitly defined state and action spaces.Within QLPSO,the Q-learning mechanism adaptively adjusts inertia weights and learning factors,thereby achieving a balance between exploration capability and convergence performance.To validate the effectiveness of the proposed approach,extensive computational experiments are conducted on benchmark instances of different scales,including small,medium,large,and ultra-large cases.The results demonstrate that QLPSO consistently delivers stable and high-quality solutions across all scenarios.In ultra-large-scale instances,it improves the best solution by 25.2%compared with the Genetic Algorithm(GA)and enhances the average solution by 16.9%over the Q-learning algorithm,showing clear advantages over the comparative methods.These findings not only confirm the effectiveness of the proposed algorithm but also provide valuable theoretical references and practical guidance for the intelligent scheduling optimization of aircraft pulsating assembly lines. 展开更多
关键词 Aircraft pulsating assembly lines skilled operator reinforcement learning pso reverse scheduling
在线阅读 下载PDF
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
12
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization K-means clustering algorithm
在线阅读 下载PDF
Investigation on the effect of solid particle erosion on the dissolution behavior of electrochemically machined TA15 titanium alloy
13
作者 Dongbao Wang Dengyong Wang +2 位作者 Wenjian Cao Shuofang Zhou Zhengyang Jiang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期252-264,共13页
During electrochemical machining(ECM),the passivation film formed on the surface of titanium alloy can lead to uneven dissolution and pitting.Solid particle erosion can effectively remove this passivation film.In this... During electrochemical machining(ECM),the passivation film formed on the surface of titanium alloy can lead to uneven dissolution and pitting.Solid particle erosion can effectively remove this passivation film.In this paper,the electrochemical dissolution behavior of Ti-6.5Al-2Zr-1Mo-1V(TA15)titanium alloy at without particle impact,low(15°)and high(90°)angle particle impact was investigated,and the influence of Al_(2)O_(3)particles on ECM was systematically expounded.It was found that under the condition of no particle erosion,the surface of electrochemically processed titanium alloy had serious pitting corrosion due to the influence of the passivation film,and the surface roughness(Sa)of the local area reached 10.088μm.Under the condition of a high-impact angle(90°),due to the existence of strain hardening and particle embedding,only the edge of the surface is dissolved,while the central area is almost insoluble,with the surface roughness(S_(a))reaching 16.086μm.On the contrary,under the condition of a low-impact angle(15°),the machining efficiency and surface quality of the material were significantly improved due to the ploughing effect and galvanic corrosion,and the surface roughness(S_(a))reached 2.823μm.Based on these findings,the electrochemical dissolution model of TA15 titanium alloy under different particle erosion conditions was established. 展开更多
关键词 TA15 titanium alloy electrochemical machining particle erosion passivation film
在线阅读 下载PDF
Response of imidazole-containing particles to emission reduction policies in China:Insights from observations in a megacity in the Sichuan Basin
14
作者 Chunying Chen Yunfei Su +1 位作者 Siyu Liu Junke Zhang 《Journal of Environmental Sciences》 2026年第1期403-412,共10页
Imidazole(IM)particles in the atmosphere affect climate,atmospheric chemical reactions,and human health.However,research on IM particles in the Sichuan Basin(SCB),one of the areas of China affected most heavily by haz... Imidazole(IM)particles in the atmosphere affect climate,atmospheric chemical reactions,and human health.However,research on IM particles in the Sichuan Basin(SCB),one of the areas of China affected most heavily by haze,remains very scarce.This study used single-particle aerosol mass spectrometry to investigate IM-containing particles in Chengdu,one of the megacities in the SCB,during summer and winter before and after implemen-tation of the Three-year Action Plan to Win the Blue-Sky Defense War(BSDW).We found that IM-containing particles accounted for 1.2%–12.0%of all detected particles,and they highly mixed with carbonaceous com-ponents,secondary inorganic species,and organic nitrogen.From before to after the BSDW,the proportion of IM-containing particles decreased by 1.8%in summer,but increased by 9.6%in winter.Ammonium/amines and carbonyl compounds were closely related to IM-containing particles;the highest proportion of IM-containing particles occurred in particles mixed with amines and carbonyls.The number fraction of IM-containing particles in all seasons was higher at night than during daytime.The potential source areas of IM-containing particles showed notable narrowing after the BSDW,and the high-value areas were found distributed closer to Chengdu and its surrounding areas.In the winter before the BSDW,most IM-containing particles(>70%)were mixed with organic carbon(OC)particles,and the contributions of OC and mixed organic–elemental carbon(OC-EC)particles increased with aggravation of pollution,whereas OC-EC and Metal particles played a more crucial role in the winter after the BSDW. 展开更多
关键词 IM-containing particles Seasonal differences Formation mechanism Regional transmission Single-particle aerosol mass spectrometer
原文传递
An Improved High-Degree Cubature Particle Filter and its Application in Bearing-only Tracking
15
作者 Yanqi Niu Dandan Zhu Yaan Li 《哈尔滨工程大学学报(英文版)》 2026年第1期300-311,共12页
In this study,a fifth-degree cubature particle filter(5CPF)is proposed to address the limited estimation accuracy in traditional particle filter algorithms for bearings-only tracking(BOT).This algorithm calculates the... In this study,a fifth-degree cubature particle filter(5CPF)is proposed to address the limited estimation accuracy in traditional particle filter algorithms for bearings-only tracking(BOT).This algorithm calculates the recommended density function by introducing a fifth-degree cubature Kalman filter algorithm to guide particle sampling,which effectively alleviates the problem of particle degradation and significantly improves the estimation accuracy of the filter.However,the 5CPF algorithm exhibits high computational complexity,particularly in scenarios with a large number of particles.Therefore,we propose the extended Kalman filter(EKF)-5CPF algorithm,which employs an EKF to replace the time update step for each particle in the 5CPF.This enhances the algorithm’s real-time capability while maintaining the high precision advantage of the 5CPF algorithm.In addition,we construct bearing-only dual-station and single-motion station target tracking systems,and the filtering performances of 5CPF and EKF-5CPF algorithms under different conditions are analyzed.The results show that both the 5CPF algorithm and EKF-5CPF have strong robustness and can adapt to different noise environments.Furthermore,both algorithms significantly outperform traditional nonlinear filtering algorithms in terms of convergence speed,tracking accuracy,and overall stability. 展开更多
关键词 Nonlinear filtering Fifth-degree cubature particle filter EKF-5CPF Bearings-only target motion analysis
在线阅读 下载PDF
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
16
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
基于PSO-BP神经网络矿井涌水量预测模型
17
作者 李启兴 张宇 +1 位作者 乔秀杰 闫国成 《煤》 2026年第1期94-99,共6页
矿井涌水量的准确预测对矿山建设及煤层安全高效回采意义重大。文章以某华北型煤田煤矿为研究对象,该矿主要受石炭-二叠系砂岩裂隙含水层影响。研究采用时间序列分析方法、BP和PSO-BP神经网络模型构建多模型预测体系。通过聚类分析发现... 矿井涌水量的准确预测对矿山建设及煤层安全高效回采意义重大。文章以某华北型煤田煤矿为研究对象,该矿主要受石炭-二叠系砂岩裂隙含水层影响。研究采用时间序列分析方法、BP和PSO-BP神经网络模型构建多模型预测体系。通过聚类分析发现,该矿涌水量受季节性影响小,进而将其视为整体研究。时间序列模型预测结果表明,该模型有一定预测能力,但存在弊端。引入PSO-BP方法优化模型,对比BP神经网络等模型,结果显示PSO-BP神经网络预测模型准确性最高(R^(2)=0.9924,RMSE值为0.08219),为矿井涌水量精准预测、灾害预警及煤矿安全生产提供了有效方法和理论支撑。 展开更多
关键词 涌水量预测 时间序列模型 pso-BP
在线阅读 下载PDF
基于PSO-SVR算法的水泥窑SCR催化剂磨损率预测
18
作者 印心如 李明月 吴越 《价值工程》 2026年第1期10-12,共3页
为精准预测水泥窑SCR催化剂磨损率,提出PSO-SVR预测方法,即借助粒子群算法优化支持向量回归机的参数。算法对比结果显示,PSO-SVR模型预测效果优于SVR模型。PSO-SVR模型结果误差更小、预测精度更高,能有效预测水泥窑烟气SCR脱硝催化剂磨... 为精准预测水泥窑SCR催化剂磨损率,提出PSO-SVR预测方法,即借助粒子群算法优化支持向量回归机的参数。算法对比结果显示,PSO-SVR模型预测效果优于SVR模型。PSO-SVR模型结果误差更小、预测精度更高,能有效预测水泥窑烟气SCR脱硝催化剂磨损特性。 展开更多
关键词 水泥窑SCR pso-SVR算法 磨损率
在线阅读 下载PDF
基于改进PSO-BO-BP的拖拉机双燃料发动机性能预测
19
作者 陈晖 王冰心 +1 位作者 黄镇财 计端 《农机化研究》 北大核心 2026年第1期268-276,共9页
为提高拖拉机双燃料发动机性能与排放预测模型的性能,提出了一种融合改进粒子群优化算法(IMPSO)、贝叶斯优化(BO)和反向传播(BP)的协同预测模型(IMPSO-BO-BP)。基于发动机台架试验数据,通过整合IMPSO全局搜索、BO概率推理和BP梯度更新机... 为提高拖拉机双燃料发动机性能与排放预测模型的性能,提出了一种融合改进粒子群优化算法(IMPSO)、贝叶斯优化(BO)和反向传播(BP)的协同预测模型(IMPSO-BO-BP)。基于发动机台架试验数据,通过整合IMPSO全局搜索、BO概率推理和BP梯度更新机制,构建多尺度优化模型。结果表明:BO解析了神经网络隐含层维度与学习率的非线性耦合效应,确定隐含层神经元数量24、学习率0.00215为最优参数组合,表明模型复杂度与学习率调控对泛化性能的协同约束作用;性能预测中,IMPSO-BO-BP对制动热效率(BTE)和制动燃料消耗率(BSFC)的预测平均绝对百分比误差(MAPE)与均方根误差(RMSE)较BO-BP模型降低25%~40%,R^(2)提升至0.995及以上,验证了其对物理主导型非线性关系的高精度建模能力;排放预测方面,模型对CO、NO_(x)和HC的MAPE为3.403%、5.223%、3.413%,R^(2)达0.9925、0.9942、0.9946,RMSE为56.429、45.709、335.322,虽精度略低于性能参数预测,但较BO-BP模型仍提升显著。研究证实多算法协同机制通过全局优化与局部收敛的互补效应,可显著提升模型精度和鲁棒性,为拖拉机双燃料发动机多目标优化控制和低排放设计提供了可靠的建模工具。 展开更多
关键词 双燃料发动机 性能预测 BP神经网络 改进粒子群优化算法
在线阅读 下载PDF
PSO改进算法水凝胶机器人在无人超市运输路径中的应用
20
作者 周昊 陆忞 《粘接》 2026年第1期9-12,16,共5页
为进一步提高机器人在无人超市运输路径的效率,提出利用水凝胶提高机器人车轮与货架的粘附效果,并将权重优化为线性惯性权重,改进加速度因子的表达式,解决粒子群算法过早拟合等问题。试验结果表明,将水凝胶粘附在机器人车轮底部,可有效... 为进一步提高机器人在无人超市运输路径的效率,提出利用水凝胶提高机器人车轮与货架的粘附效果,并将权重优化为线性惯性权重,改进加速度因子的表达式,解决粒子群算法过早拟合等问题。试验结果表明,将水凝胶粘附在机器人车轮底部,可有效提高机器人在货架的粘附性能,且无人超市环境温度应控制为24℃,可以保证水凝胶获得最优的粘附强度。断裂伸长率呈现增加后下降趋势。当过氧化物酶掺量为3.0%时,水凝胶的断裂伸长率最大,断裂伸长率高达320%,较1.0%、2.0%、4.0%分别增加52.38%、14.28%、18.52%。当迭代次数为100次时,改进粒子群算法的运输路径距离为950 m。改进粒子群算法的运输路径为P-C-F-G-A,路径长度达到最短500 m,且可有效避免机器人与货架碰撞。因此将水凝胶应用在机器人车轮基底,并结合改进粒子群算法优化无人超市运输路径,可提高机器人路径运输效率。 展开更多
关键词 粒子群算法 水凝胶 机器人 无人超市运输
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部