Objectives:Due to systematic side effects,there is a growing interest in nanoparticle formulation of anticancer drugs.Here,we aimed to synthesize poly(styrene-alt-maleic anhydride)cross-linked by melamine(PSMA/Me)and ...Objectives:Due to systematic side effects,there is a growing interest in nanoparticle formulation of anticancer drugs.Here,we aimed to synthesize poly(styrene-alt-maleic anhydride)cross-linked by melamine(PSMA/Me)and coated with magnetite nanoparticles(MNPs)PSMA/Me/Fe_(3)O_(4).In addition,we aimed to load paclitaxel(PTX)into PSMA/Me/Fe_(3)O_(4)for drug delivery and anticancer investigations.Methods:Novel PSMA/Me was synthesized via free radical copolymerization,coated with Fe_(3)O_(4),and then used as a transporter for PTX delivery.Fabricated copolymer was characterized using SEM,TGA,and XRD techniques.Drug release rate and loading efficiency were investigated.Human ovarian cancer cells(Skov-3)and breast cancer cells(MCF-7 cells)were incubated with the serial concentration of either free PTX or PSMA/Me/Fe_(3)O_(4)/PTX for cell viability and IC_(50)analysis for 24 and 48 h.Results:Characterization methods confirmed PSMA/Me copolymer formation.The results showed a significant encapsulation efficiency of 83%.The drug release analysis exhibited that PSMA/Me/Fe_(3)O_(4)/PTX may be considered pH-sensitive nanocarriers.PSMA/Me/Fe_(3)O_(4)/PTX reduced cell viability both dose and time-dependently(p<0.05).IC50 values of PSMA/Me/Fe_(3)O_(4)/PTX were low when compared to free PTX either 24 or 48 h post-treatment.Conclusions:Our results indicated that PSMA/Me/Fe_(3)O_(4)/PTX was more cytotoxic than PTX in both cancer cells.Findings indicated the potential of PSMA/Me/Fe_(3)O_(4)/PTX as an anticancer nanocarrier system.展开更多
文摘Objectives:Due to systematic side effects,there is a growing interest in nanoparticle formulation of anticancer drugs.Here,we aimed to synthesize poly(styrene-alt-maleic anhydride)cross-linked by melamine(PSMA/Me)and coated with magnetite nanoparticles(MNPs)PSMA/Me/Fe_(3)O_(4).In addition,we aimed to load paclitaxel(PTX)into PSMA/Me/Fe_(3)O_(4)for drug delivery and anticancer investigations.Methods:Novel PSMA/Me was synthesized via free radical copolymerization,coated with Fe_(3)O_(4),and then used as a transporter for PTX delivery.Fabricated copolymer was characterized using SEM,TGA,and XRD techniques.Drug release rate and loading efficiency were investigated.Human ovarian cancer cells(Skov-3)and breast cancer cells(MCF-7 cells)were incubated with the serial concentration of either free PTX or PSMA/Me/Fe_(3)O_(4)/PTX for cell viability and IC_(50)analysis for 24 and 48 h.Results:Characterization methods confirmed PSMA/Me copolymer formation.The results showed a significant encapsulation efficiency of 83%.The drug release analysis exhibited that PSMA/Me/Fe_(3)O_(4)/PTX may be considered pH-sensitive nanocarriers.PSMA/Me/Fe_(3)O_(4)/PTX reduced cell viability both dose and time-dependently(p<0.05).IC50 values of PSMA/Me/Fe_(3)O_(4)/PTX were low when compared to free PTX either 24 or 48 h post-treatment.Conclusions:Our results indicated that PSMA/Me/Fe_(3)O_(4)/PTX was more cytotoxic than PTX in both cancer cells.Findings indicated the potential of PSMA/Me/Fe_(3)O_(4)/PTX as an anticancer nanocarrier system.