期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Characterization and manipulation of the photosystem Ⅱ-semiconductor interfacial molecular interactions in solar-to-chemical energy conversion
1
作者 Min He Wangyin Wang +7 位作者 Zheyi Liu Wenxiang Zhang Jinan Li Wenming Tian Ye Zhou Yan Jin Fangjun Wang Can Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期437-443,I0012,共8页
Semi-artificial photosynthesis interfacing catalytic protein machinery with synthetic photocatalysts exhibits great potential in solar-to-chemical energy conversion. However, characterizing and manipulating the molecu... Semi-artificial photosynthesis interfacing catalytic protein machinery with synthetic photocatalysts exhibits great potential in solar-to-chemical energy conversion. However, characterizing and manipulating the molecular integration structure at the biotic-abiotic interface remain a challenging task. Herein,the biointerface molecular integration details of photosystem II(PSII)-semiconductor hybrids, including the PSII orientation, interfacial microdomains, and overall structure modulation, are systematically interrogated by lysine reactivity profiling mass spectrometry. We demonstrate the semiconductor surface biocompatibility is essential to the PSII self-assembly with uniform orientation and electroactive structure.Highly directional localization of PSII onto more hydrophilic Ru/Sr Ti O_(3):Rh surface exhibits less disturbance on PSII structure and electron transfer chain, beneficial to the high water splitting activity.Further, rational modification of hydrophobic Ru_(2)S_(3)/Cd S surface with biocompatible protamine can improve the hybrid O_(2)-evolving activity 83.3%. Our results provide the mechanistic understanding to the structure–activity relationship of PSII-semiconductor hybrids and contribute to their rational design in the future. 展开更多
关键词 psii-semiconductor hybrids Biointerface molecular interaction Solar-to-chemical energy conversion Mass spectrometry Lysine reactivity profiling
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部