Semi-artificial photosynthesis interfacing catalytic protein machinery with synthetic photocatalysts exhibits great potential in solar-to-chemical energy conversion. However, characterizing and manipulating the molecu...Semi-artificial photosynthesis interfacing catalytic protein machinery with synthetic photocatalysts exhibits great potential in solar-to-chemical energy conversion. However, characterizing and manipulating the molecular integration structure at the biotic-abiotic interface remain a challenging task. Herein,the biointerface molecular integration details of photosystem II(PSII)-semiconductor hybrids, including the PSII orientation, interfacial microdomains, and overall structure modulation, are systematically interrogated by lysine reactivity profiling mass spectrometry. We demonstrate the semiconductor surface biocompatibility is essential to the PSII self-assembly with uniform orientation and electroactive structure.Highly directional localization of PSII onto more hydrophilic Ru/Sr Ti O_(3):Rh surface exhibits less disturbance on PSII structure and electron transfer chain, beneficial to the high water splitting activity.Further, rational modification of hydrophobic Ru_(2)S_(3)/Cd S surface with biocompatible protamine can improve the hybrid O_(2)-evolving activity 83.3%. Our results provide the mechanistic understanding to the structure–activity relationship of PSII-semiconductor hybrids and contribute to their rational design in the future.展开更多
基金the financial supported by National Key R&D Program of China,China(2019YFE0119300)the National Natural Science Foundation of China,China(32088101,91853101,and 22075280)+2 种基金the Original Innovation Project of CAS,China(ZDBSLY-SLH032)the Excellent Young Scientist Grant of Liaoning Province,China(2019-YQ-07)the grant from DICP(DICPI202007)。
文摘Semi-artificial photosynthesis interfacing catalytic protein machinery with synthetic photocatalysts exhibits great potential in solar-to-chemical energy conversion. However, characterizing and manipulating the molecular integration structure at the biotic-abiotic interface remain a challenging task. Herein,the biointerface molecular integration details of photosystem II(PSII)-semiconductor hybrids, including the PSII orientation, interfacial microdomains, and overall structure modulation, are systematically interrogated by lysine reactivity profiling mass spectrometry. We demonstrate the semiconductor surface biocompatibility is essential to the PSII self-assembly with uniform orientation and electroactive structure.Highly directional localization of PSII onto more hydrophilic Ru/Sr Ti O_(3):Rh surface exhibits less disturbance on PSII structure and electron transfer chain, beneficial to the high water splitting activity.Further, rational modification of hydrophobic Ru_(2)S_(3)/Cd S surface with biocompatible protamine can improve the hybrid O_(2)-evolving activity 83.3%. Our results provide the mechanistic understanding to the structure–activity relationship of PSII-semiconductor hybrids and contribute to their rational design in the future.