The southern region of Saudi Arabia exhibits a distinct seismic profile shaped by the Red Sea Rift and local fault systems, necessitating rigorous seismic hazard evaluations and tailored structural design strategies. ...The southern region of Saudi Arabia exhibits a distinct seismic profile shaped by the Red Sea Rift and local fault systems, necessitating rigorous seismic hazard evaluations and tailored structural design strategies. This study applies a robust Probabilistic Seismic Hazard Analysis (PSHA) framework to compute Maximum Considered Earthquake (MCE) and Risk-Targeted Maximum Considered Earthquake (MCER) values for major cities, including Jazan, Abha, and Najran. Utilizing local seismotectonic models, ground motion prediction equations (GMPEs), and soil classifications, the study generates precise ground motion parameters critical for infrastructure planning and safety. Results indicate significant seismic hazard variability, with Jazan showing high seismic risks with an MCER SA (0.2 s) of 0.45 g, compared to Najran’s lower risks at 0.23 g. Structural design guidelines, informed by MCE and MCER calculations, prioritize the integration of site-specific seismic data, enhanced ductility requirements, and advanced analytical methods to ensure resilient and sustainable infrastructure. The study underscores the necessity of localized seismic assessments and modern engineering practices to effectively mitigate seismic risks in this geologically complex region.展开更多
Recent studies on assessment of a very low annual probability of exceeding (APE) ground motions, 10-4 or less, have highlighted the importance of the upper bound of ground motions when very low probability results a...Recent studies on assessment of a very low annual probability of exceeding (APE) ground motions, 10-4 or less, have highlighted the importance of the upper bound of ground motions when very low probability results are acquired. The truncation level adopted in probabilistic seismic hazard analysis (PSHA) should be determined by an aleatory uncertainty model (i.e., distribution model) of ground motions and the possible maximum and minimum ground motion values of a specific earthquake. However, at the present time, it is impossible to establish the upper bound model for ground motions based on the source characteristics and/or ground motion propagation. McGuire suggested a truncation level be fixed at a number of = 6, or the distribution of residuals be truncated in such a manner that site intensity cannot be greater than the epicenter intensity. This study aims to find a reasonable and feasible truncation level to be used in PSHA when the physical mechanism is not available to find the extreme ground motion. A mathematical analysis of the influence of the truncation level on PSHA, case studies of sites in different seismotectonic settings, and a distribution analysis of ground motion residuals are conducted in this study. It is concluded that = 4 is the minimum acceptable value for engineering applications for APEs within 0.002 to 10-4, and for low APEs, such as 10-5 and 10-6, the value of should be no less than 5 in most regions of China.展开更多
A probabilistic seismic hazard analysis (PSHA) was conducted to establish the hazard spectra for a site located at Dubai Creek on the west coast of the United Arab Emirates (UAE). The PSHA considered all the seism...A probabilistic seismic hazard analysis (PSHA) was conducted to establish the hazard spectra for a site located at Dubai Creek on the west coast of the United Arab Emirates (UAE). The PSHA considered all the seismogenic sources that affect the site, including plate boundaries such as the Makran subduction zone, the Zagros fold-thrust region and the transition fault system between them; and local crustal faults in UAE. PSHA indicated that local faults dominate the hazard. The peak ground acceleration (PGA) for the 475-year return period spectrum is 0.17 g and 0.33 g for the 2,475-year return period spectrum. The hazard spectra are then employed to establish rock ground motions using the spectral matching technique.展开更多
This paper presents spatial variation of seismic hazard at the surface level for India,covering 6-38°N and 68-98°E.The most recent knowledge on seismic activity in the region has been used to evaluate the ha...This paper presents spatial variation of seismic hazard at the surface level for India,covering 6-38°N and 68-98°E.The most recent knowledge on seismic activity in the region has been used to evaluate the hazard incorporating uncertainties associated with the seismicity parameters using different modeling methodologies.Three types of seismic source models,viz.linear sources,gridded seismicity model and areal sources,were considered to model the seismic sources and different sets of ground motion prediction equations were used for different tectonic provinces to characterize the attenuation properties.The hazard estimation at bedrock level has been carried out using probabilistic approach and the results obtained from various methodologies were combined in a logic tree framework.The seismic site characterization of India was done using topographic slope map derived from Digital Elevation Model data.This paper presents estimation of the hazard at surface level,using appropriate site amplification factors corresponding to various site classes based on V_(S30) values derived from the topographic gradient.Spatial variation of surface level peak horizontal acceleration(PHA) for return periods of 475 years and 2475 years are presented as contour maps.展开更多
文摘The southern region of Saudi Arabia exhibits a distinct seismic profile shaped by the Red Sea Rift and local fault systems, necessitating rigorous seismic hazard evaluations and tailored structural design strategies. This study applies a robust Probabilistic Seismic Hazard Analysis (PSHA) framework to compute Maximum Considered Earthquake (MCE) and Risk-Targeted Maximum Considered Earthquake (MCER) values for major cities, including Jazan, Abha, and Najran. Utilizing local seismotectonic models, ground motion prediction equations (GMPEs), and soil classifications, the study generates precise ground motion parameters critical for infrastructure planning and safety. Results indicate significant seismic hazard variability, with Jazan showing high seismic risks with an MCER SA (0.2 s) of 0.45 g, compared to Najran’s lower risks at 0.23 g. Structural design guidelines, informed by MCE and MCER calculations, prioritize the integration of site-specific seismic data, enhanced ductility requirements, and advanced analytical methods to ensure resilient and sustainable infrastructure. The study underscores the necessity of localized seismic assessments and modern engineering practices to effectively mitigate seismic risks in this geologically complex region.
基金Program of Seismic Ground Motion Parameter Zonation Map of Chinathe Basic Research Fund of the Institute of Geophysics Under Grant No.DQJB11C18the Special Funds for Science and Technology Research Under Grant No.200708003
文摘Recent studies on assessment of a very low annual probability of exceeding (APE) ground motions, 10-4 or less, have highlighted the importance of the upper bound of ground motions when very low probability results are acquired. The truncation level adopted in probabilistic seismic hazard analysis (PSHA) should be determined by an aleatory uncertainty model (i.e., distribution model) of ground motions and the possible maximum and minimum ground motion values of a specific earthquake. However, at the present time, it is impossible to establish the upper bound model for ground motions based on the source characteristics and/or ground motion propagation. McGuire suggested a truncation level be fixed at a number of = 6, or the distribution of residuals be truncated in such a manner that site intensity cannot be greater than the epicenter intensity. This study aims to find a reasonable and feasible truncation level to be used in PSHA when the physical mechanism is not available to find the extreme ground motion. A mathematical analysis of the influence of the truncation level on PSHA, case studies of sites in different seismotectonic settings, and a distribution analysis of ground motion residuals are conducted in this study. It is concluded that = 4 is the minimum acceptable value for engineering applications for APEs within 0.002 to 10-4, and for low APEs, such as 10-5 and 10-6, the value of should be no less than 5 in most regions of China.
文摘A probabilistic seismic hazard analysis (PSHA) was conducted to establish the hazard spectra for a site located at Dubai Creek on the west coast of the United Arab Emirates (UAE). The PSHA considered all the seismogenic sources that affect the site, including plate boundaries such as the Makran subduction zone, the Zagros fold-thrust region and the transition fault system between them; and local crustal faults in UAE. PSHA indicated that local faults dominate the hazard. The peak ground acceleration (PGA) for the 475-year return period spectrum is 0.17 g and 0.33 g for the 2,475-year return period spectrum. The hazard spectra are then employed to establish rock ground motions using the spectral matching technique.
文摘This paper presents spatial variation of seismic hazard at the surface level for India,covering 6-38°N and 68-98°E.The most recent knowledge on seismic activity in the region has been used to evaluate the hazard incorporating uncertainties associated with the seismicity parameters using different modeling methodologies.Three types of seismic source models,viz.linear sources,gridded seismicity model and areal sources,were considered to model the seismic sources and different sets of ground motion prediction equations were used for different tectonic provinces to characterize the attenuation properties.The hazard estimation at bedrock level has been carried out using probabilistic approach and the results obtained from various methodologies were combined in a logic tree framework.The seismic site characterization of India was done using topographic slope map derived from Digital Elevation Model data.This paper presents estimation of the hazard at surface level,using appropriate site amplification factors corresponding to various site classes based on V_(S30) values derived from the topographic gradient.Spatial variation of surface level peak horizontal acceleration(PHA) for return periods of 475 years and 2475 years are presented as contour maps.