Bimetallic CoCu nanocomposites were synthesized in polyol by using Ru as heterogeneous nucleation agent and stearic acid as surfactant, and their catalytic properties were investi- gated by hydrogenolysis of glycerol ...Bimetallic CoCu nanocomposites were synthesized in polyol by using Ru as heterogeneous nucleation agent and stearic acid as surfactant, and their catalytic properties were investi- gated by hydrogenolysis of glycerol to propanediols. It was found that the surfactant could induce Co nanocrystals to form nanowires as structure-directing agent, while it's ineffective for Cu because only spherical Cu particles were produced under the same condition. When Co2+ and Cu2+ coexist in polyol, Cu2+ is firstly reduced and forms the spherical particles, and then the Cu particles afford surface for the subsequential reduction of Co2+ and growth of Co nanocrystals to form the nanorods, obtaining the urchin-like CoCu nanocomposites. The catalytic performance in selective hydrogenolysis of glycerol to propanediols proposed that the CoCu urchin-like nanocomposites was superior to the Co nanowires possibly due to that the synergistic effect between Co and Cu component promoted conversion of glyc- erol and obtained the higher propanediol yields based on the specific surface areas of the catalysts.展开更多
Selective hydrogenolysis of glycerol to 1,3‐propanediol(1,3‐PD) is an important yet challenging method for the transformation of biomass into value‐added chemicals due to steric hindrance and unfavorable thermody...Selective hydrogenolysis of glycerol to 1,3‐propanediol(1,3‐PD) is an important yet challenging method for the transformation of biomass into value‐added chemicals due to steric hindrance and unfavorable thermodynamics. In previous studies, chemoselective performances were found de‐manding and sensitive to H2 pressure. In this regard, we manipulate the chemical/physical charac‐teristics of the catalyst supports via doping Nb into WOx and prepared 1D needle‐, 2D flake‐, and 3D sphere‐stack mesoporous structured Nb‐WOx with increased surface acid sites. Moreover, Nb dop‐ing can successfully inhibit the over‐reduction of active W species during glycerol hydrogenolysis and substantially broaden the optimal H2 pressure from 1 to 5 MPa. When Nb doping is 2%, sup‐ported Pt catalysts showed promising performance for the selective hydrogenolysis of glycerol to 1,3‐PD over an unprecedentedly wide H2 pressure range, which will guarantee better catalyst sta‐bility in the long run, as well as expand their applications to other hydrogen‐related reactions.展开更多
The production of propylene carbonate (PC) from urea and 1,2-propanediol (PG) was investigated in a batch process. The catalytic performances of zinc chloride and magnesium chloride were investigated for this reac...The production of propylene carbonate (PC) from urea and 1,2-propanediol (PG) was investigated in a batch process. The catalytic performances of zinc chloride and magnesium chloride were investigated for this reaction system. The influences of various operation conditions on the PC yield were explored. In this work, MgCl2 and ZnCl2 showed the excellent catalytic activity toward PC synthesis, and the yields of propylene carbonate reached 96.5% and 92.4%, respectively. The optimum reaction conditions were as follows: ethanol/urea molar ratio of 4, catalyst concentration of 1.5%, reaction temperature of 160 ℃, reaction time of 3 h, respectively. The route from urea and 1,2-propanediol shows advantages, such as mild reaction condition and safe operation. The catalytic system is environmentally benign.展开更多
MnOx-promoted Ni-based catalyst supported by ZnO was developed to selectively hydrogenate glucose into polyols in water at 523 K with a yield of 64.9%. Using glucose, sorbitol, glycerol and LA as the rawmaterials, the...MnOx-promoted Ni-based catalyst supported by ZnO was developed to selectively hydrogenate glucose into polyols in water at 523 K with a yield of 64.9%. Using glucose, sorbitol, glycerol and LA as the rawmaterials, the roles of nickel, ZnO and MnOx were investigated. The results show that nickel provided a new pathway of glucose to sorbitol and played an important role in the hydrogenation of C3 intermediates to 1,2-propanediol(1,2-PDO). The high yield of 1, 2-PDO was attributed to effective C–C bond cleavage performance of ZnO support promoted by MnOx. ZnO and MnOx contribute to the conversion of glycerol to lactic acid(LA) and LA to 1, 2-PDO, respectively. A concise pathway for hydrogenation of glucose over Ni-based catalyst was proposed.展开更多
Cu-x-Fe-y/SiO2 catalysts were prepared using urea-assisted sol-gel method. The structure and physicochemical properties of the catalysts were characterized using N-2 adsorption-desorption, transmission electron micros...Cu-x-Fe-y/SiO2 catalysts were prepared using urea-assisted sol-gel method. The structure and physicochemical properties of the catalysts were characterized using N-2 adsorption-desorption, transmission electron microscopy, H-2-temperature-programmed reduction, powder X-ray diffraction, and X-ray photoelectron spectroscopy. Compared with monometallic Cu or Fe catalysts, the bimetallic Cu-x-Fe-y/SiO2 catalysts exhibited enhanced catalytic performance for the selective hydrogenation of diethyl malonate to 1,3-propanediol. The bimetallic catalyst with an optimal Cu/Fe atomic ratio of 2 exhibited the highest activity, which yielded 96.3% conversion to diethyl malonate and 93.3% selectivity to 1,3-propanediol under the optimal reaction conditions. Characterization results revealed that interactions between Cu and Fe contributed to the improvement of diethyl malonate conversion and selectivity to 1,3-propanediol. The X-ray photoelectron spectroscopy results revealed that the addition of appropriate amount of Fe species enhanced the reduction of Cu2+ species, thereby increasing the Cu-0 species on the surface of bimetallic catalyst. It led to a better chemisorption capacity of hydrogen and further promoted of the activation of hydrogen molecule. The ethyl acetate temperature-programmed desorption results indicated that the FeOx species provided the additional adsorption sites for substrate molecules, and they activated the C=O bond. The improved catalytic performance of bimetallic Cu-x-Fe-y/SiO2 catalyst was mainly attributed to the synergistic effect between Cu-0 and FeOx species. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
[ Objective ] The paper was to investigate the content of 1,2-propanediol in silage feed. [ Method ] Whole-crop corn was stored in laboratory bag silos and outdoor bunker silos. Bag silos were stored for 3, 7, 14, 28,...[ Objective ] The paper was to investigate the content of 1,2-propanediol in silage feed. [ Method ] Whole-crop corn was stored in laboratory bag silos and outdoor bunker silos. Bag silos were stored for 3, 7, 14, 28, 56 and 120 d, respectively, and fermentation products were analyzed after opening; the fermentation products, which were from three 500 t above-ground outdoor bunker silos stored for 120 d, were detected. Eight sampling points were selected for each bunker silo. [ Result] No 1,2-propanediol was detected out in laboratory bag silos, and lactic acid was dominant in fermentation products. The acetic acid content significantly increased ( P 〈 0.05 ) with the extension of storage time, whereas the acetic acid content was kept below one-third of the lactic acid content ; 1,2-propanediol and a small amount of 1-propanol were detected out in three bunker silos, and lactic acid was dominant in fermentation products, whereas the content of acetic acid was slightly lower than that of lactic acid. The differences in fermentation products from different silos and different sites in silos presented heterogeneity; except to propanediol, lactic acid bacteria and yeast, there was no significant difference in fermentation products at the top and bottom layers of silos ( P 〉0.05 ) ; there were significant differences in contents of lactic acid, acetic acid, 1,2-propanediol, and yeast between the outer and inner parts of silos (P 〈 0.05 ) ; except to pH values and acetic acid, there were significant differences in fermentation products between hunker silos (P 〈0. 05). [ Conclusion] No 1,2-propanediol is detected out in laboratory bag silos due to relatively simple fermentation products. However, 1,2-propanediol can be detected in the bunker silos due to complex outdoor environment for silage, and the microorganisms producing 1,2-propanediol exist in silos.展开更多
A practical chemical synthesis of L-camitine (1) has been accomplished from (R)-3-chloro-1,2-propanediol ((R)-4), which is a main by-product originated from (R,R)-Salen Co(III) catalyzed hydrolytic kinetic...A practical chemical synthesis of L-camitine (1) has been accomplished from (R)-3-chloro-1,2-propanediol ((R)-4), which is a main by-product originated from (R,R)-Salen Co(III) catalyzed hydrolytic kinetic resolution (HKR) of (±)-epichlorohydrin. (R)-4 was utilized as a chiral starting material to prepare the key intermediate cyclic sulfite ((R)-S). The new synthetic approach demonstrated an efficient utilization of organic by-product for the asymmetric synthesis of bioactive compounds.展开更多
As the biodiesel production is rapidly enhanced, the crude glycerol, which is by-product of biodiesel processes, is state of surplus. 1,3-PDO (1,3-propanediol), a valuable monomer of poly(trimethylene terephthalate) (...As the biodiesel production is rapidly enhanced, the crude glycerol, which is by-product of biodiesel processes, is state of surplus. 1,3-PDO (1,3-propanediol), a valuable monomer of poly(trimethylene terephthalate) (PTT), can be produced from the fermentation process using crude glycerin as a carbon source. For the economic biological production of 1,3-PDO, the low cost and high efficient separation processes is essential. In this study, aqueous two-phase system composed of various hydrophilic alcohols and salt was used as a primary separation step for 1,3-PDO. It was found that the aqueous two-phase systems are easily formed with decreasing of the polarity of alcohols. The extraction efficiency is proportional to the polarity of alcohols. In case of methanol or ethanol/K2HPO4, the extraction efficiency was more than 90%.? It was concluded that the aqueous two-phase extraction using methanol or ethanol/K2HPO4 can be applied? for the primary separation of 1,3-PDO? as an alternative to a conventional primary separation processes.展开更多
1,3-Propanediol is a promising renewable resource produced by microbial production. It is mainly used in many synthetic reactions, particularly applied to the polymer synthesis and cosmetics industry. We described her...1,3-Propanediol is a promising renewable resource produced by microbial production. It is mainly used in many synthetic reactions, particularly applied to the polymer synthesis and cosmetics industry. We described here the isolation of strain ZH-1, which has the ability of high production with 1,3-propanediol, from Fenhe River in China. It was classified as a member of K. pneumoniae after the study of phenotypic, physio-logical, biochemical and phylogenetic (16S rDNA). The initial glycerol concentration, fermentation time and pH value of strain ZH-1 were determined to be 50 g·L<sup>-1</sup>, 36 h and 8.0. Under these conditions, the practical yield of 1,3-PD was 18.53 g·L<sup>-1</sup> and a molar yield (mol<sub>1,3-PD</sub> mol<sub>Glycerol</sub>-1</sup> of 1,3-propanediol to glycerol of 0.497. In addition, we found that for the strain ZH-1, the optimum grown pH was 9.0, so we can deter-mine that it is a new member of alkali-resistant strains.展开更多
Benzaldehyde 1,2-propanediol acetal was synthesized from benzaldehyde and 1,2-propanediol in the presence of SO42-/TiO2-MoO3-La2O3.The factors influencing the synthesis were discussed and the best conditions were foun...Benzaldehyde 1,2-propanediol acetal was synthesized from benzaldehyde and 1,2-propanediol in the presence of SO42-/TiO2-MoO3-La2O3.The factors influencing the synthesis were discussed and the best conditions were found out.The optimum conditions are:molar ratio of benzaldehyde to 1,2-propanediol is 1:1.8,the quantity of catalyst is equal to 1.0% feed stock,and the reaction time is 1.0 h.SO42-/TiO2-MoO3-La2O3 is an excellent catalyst for synthesizing benzaldehyde 1,2-propanediol acetal and its yield can reach over 77.2%.展开更多
Copper catalysts supported on metal oxides display unique efficiency and selectivity in catalyzing glycerol hydrogenolysis to propanediols. Understanding the reaction at the molecular level is the key to rational desi...Copper catalysts supported on metal oxides display unique efficiency and selectivity in catalyzing glycerol hydrogenolysis to propanediols. Understanding the reaction at the molecular level is the key to rational design of better catalysts for propanediol synthesis, which is one of the major challenges for glycerol application in energy. In this work, extensive calculations based on periodic density functional theory were carried out to study thermodynamics of glycerol hydrogenolysis over binary model catalysts, including Cu/ZrO2 and Cu/MgO, with the focus to elucidate the competitive reaction pathways to produce the 1,2-propanediol (1,2-PDO) and 1,3-propanediol (1,3-PDO). Our results suggest that the reaction starts with glycerol dehydration on the metal oxide, followed by sequential hydrogenation over metal centers. Based on our explorations on the stabilities of adsorbed reactants, dehydrated intermediates and hydrogenated species along the reaction channels, the DFT calculations show that the 1,2-PDO formation will dominate in comparison to the 1,3-PDO from thermodynamic viewpoint. This is consistent with our experiments where the Cu catalysts seem to give the 1,2-PDO as a main product. The calculations and experiments also indicate that the Cu/MgO exhibits superior activities than Cu/ZrO2 for the hydrogenolysis of glycerol molecules.展开更多
基金This work was supported by the National Ba- sic Research Program of China (No.2012CB215304), tile Science Foundation of Guangdong Province (No.$2012040006992), and the International Co- operation Project of Ministry of Science and Technology of China (No.2012DFA61080).
文摘Bimetallic CoCu nanocomposites were synthesized in polyol by using Ru as heterogeneous nucleation agent and stearic acid as surfactant, and their catalytic properties were investi- gated by hydrogenolysis of glycerol to propanediols. It was found that the surfactant could induce Co nanocrystals to form nanowires as structure-directing agent, while it's ineffective for Cu because only spherical Cu particles were produced under the same condition. When Co2+ and Cu2+ coexist in polyol, Cu2+ is firstly reduced and forms the spherical particles, and then the Cu particles afford surface for the subsequential reduction of Co2+ and growth of Co nanocrystals to form the nanorods, obtaining the urchin-like CoCu nanocomposites. The catalytic performance in selective hydrogenolysis of glycerol to propanediols proposed that the CoCu urchin-like nanocomposites was superior to the Co nanowires possibly due to that the synergistic effect between Co and Cu component promoted conversion of glyc- erol and obtained the higher propanediol yields based on the specific surface areas of the catalysts.
基金supported by the National Natural Science Foundation of China (2169008, 21690084, 21673228, 21303187, 21403218)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020100)+1 种基金DICP ZZBS 201612Key Projects for Fundamental Research and Development of China (2016YFA0202801)~~
文摘Selective hydrogenolysis of glycerol to 1,3‐propanediol(1,3‐PD) is an important yet challenging method for the transformation of biomass into value‐added chemicals due to steric hindrance and unfavorable thermodynamics. In previous studies, chemoselective performances were found de‐manding and sensitive to H2 pressure. In this regard, we manipulate the chemical/physical charac‐teristics of the catalyst supports via doping Nb into WOx and prepared 1D needle‐, 2D flake‐, and 3D sphere‐stack mesoporous structured Nb‐WOx with increased surface acid sites. Moreover, Nb dop‐ing can successfully inhibit the over‐reduction of active W species during glycerol hydrogenolysis and substantially broaden the optimal H2 pressure from 1 to 5 MPa. When Nb doping is 2%, sup‐ported Pt catalysts showed promising performance for the selective hydrogenolysis of glycerol to 1,3‐PD over an unprecedentedly wide H2 pressure range, which will guarantee better catalyst sta‐bility in the long run, as well as expand their applications to other hydrogen‐related reactions.
基金supported by the National Natural Science Fund for Distinguished Young Scholars of China(No.20625308).
文摘The production of propylene carbonate (PC) from urea and 1,2-propanediol (PG) was investigated in a batch process. The catalytic performances of zinc chloride and magnesium chloride were investigated for this reaction system. The influences of various operation conditions on the PC yield were explored. In this work, MgCl2 and ZnCl2 showed the excellent catalytic activity toward PC synthesis, and the yields of propylene carbonate reached 96.5% and 92.4%, respectively. The optimum reaction conditions were as follows: ethanol/urea molar ratio of 4, catalyst concentration of 1.5%, reaction temperature of 160 ℃, reaction time of 3 h, respectively. The route from urea and 1,2-propanediol shows advantages, such as mild reaction condition and safe operation. The catalytic system is environmentally benign.
基金financially supported by the National Science Foundation of China (21671132)Shanghai Science and Technology Committee(16dz1207200)the Youth Innovation Promotion Association CAS(2015231)
文摘MnOx-promoted Ni-based catalyst supported by ZnO was developed to selectively hydrogenate glucose into polyols in water at 523 K with a yield of 64.9%. Using glucose, sorbitol, glycerol and LA as the rawmaterials, the roles of nickel, ZnO and MnOx were investigated. The results show that nickel provided a new pathway of glucose to sorbitol and played an important role in the hydrogenation of C3 intermediates to 1,2-propanediol(1,2-PDO). The high yield of 1, 2-PDO was attributed to effective C–C bond cleavage performance of ZnO support promoted by MnOx. ZnO and MnOx contribute to the conversion of glycerol to lactic acid(LA) and LA to 1, 2-PDO, respectively. A concise pathway for hydrogenation of glucose over Ni-based catalyst was proposed.
基金supported by the Natural Science Foundation of China (91545115,21473145,and 21403178)the Postgraduate Basic Innovative Research Program of Xiamen University (201412G001)the Program for Innovative Research Team in Chinese Universities (no.IRT_14R31)
文摘Cu-x-Fe-y/SiO2 catalysts were prepared using urea-assisted sol-gel method. The structure and physicochemical properties of the catalysts were characterized using N-2 adsorption-desorption, transmission electron microscopy, H-2-temperature-programmed reduction, powder X-ray diffraction, and X-ray photoelectron spectroscopy. Compared with monometallic Cu or Fe catalysts, the bimetallic Cu-x-Fe-y/SiO2 catalysts exhibited enhanced catalytic performance for the selective hydrogenation of diethyl malonate to 1,3-propanediol. The bimetallic catalyst with an optimal Cu/Fe atomic ratio of 2 exhibited the highest activity, which yielded 96.3% conversion to diethyl malonate and 93.3% selectivity to 1,3-propanediol under the optimal reaction conditions. Characterization results revealed that interactions between Cu and Fe contributed to the improvement of diethyl malonate conversion and selectivity to 1,3-propanediol. The X-ray photoelectron spectroscopy results revealed that the addition of appropriate amount of Fe species enhanced the reduction of Cu2+ species, thereby increasing the Cu-0 species on the surface of bimetallic catalyst. It led to a better chemisorption capacity of hydrogen and further promoted of the activation of hydrogen molecule. The ethyl acetate temperature-programmed desorption results indicated that the FeOx species provided the additional adsorption sites for substrate molecules, and they activated the C=O bond. The improved catalytic performance of bimetallic Cu-x-Fe-y/SiO2 catalyst was mainly attributed to the synergistic effect between Cu-0 and FeOx species. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金Supported by National Natural Science Foundation of China(31402136)Research Project of Bureau of Reclamation in Heilongjiang Province(HNK135-04-02-03)+1 种基金Postdoctoral Fund in Heilongjiang Province(LBH-Z14029)Doctoral Fund in Heilongjiang Bayi Agricultural University(B2012-06)
文摘[ Objective ] The paper was to investigate the content of 1,2-propanediol in silage feed. [ Method ] Whole-crop corn was stored in laboratory bag silos and outdoor bunker silos. Bag silos were stored for 3, 7, 14, 28, 56 and 120 d, respectively, and fermentation products were analyzed after opening; the fermentation products, which were from three 500 t above-ground outdoor bunker silos stored for 120 d, were detected. Eight sampling points were selected for each bunker silo. [ Result] No 1,2-propanediol was detected out in laboratory bag silos, and lactic acid was dominant in fermentation products. The acetic acid content significantly increased ( P 〈 0.05 ) with the extension of storage time, whereas the acetic acid content was kept below one-third of the lactic acid content ; 1,2-propanediol and a small amount of 1-propanol were detected out in three bunker silos, and lactic acid was dominant in fermentation products, whereas the content of acetic acid was slightly lower than that of lactic acid. The differences in fermentation products from different silos and different sites in silos presented heterogeneity; except to propanediol, lactic acid bacteria and yeast, there was no significant difference in fermentation products at the top and bottom layers of silos ( P 〉0.05 ) ; there were significant differences in contents of lactic acid, acetic acid, 1,2-propanediol, and yeast between the outer and inner parts of silos (P 〈 0.05 ) ; except to pH values and acetic acid, there were significant differences in fermentation products between hunker silos (P 〈0. 05). [ Conclusion] No 1,2-propanediol is detected out in laboratory bag silos due to relatively simple fermentation products. However, 1,2-propanediol can be detected in the bunker silos due to complex outdoor environment for silage, and the microorganisms producing 1,2-propanediol exist in silos.
基金Sponsored by the National Natural Science Foundation of China(No.20972015)the Natural Science Foundation of Beijing(No.2082016)the Science and Technology Innovation Foundation for the College Students of Beijing(No.B091000814)
文摘A practical chemical synthesis of L-camitine (1) has been accomplished from (R)-3-chloro-1,2-propanediol ((R)-4), which is a main by-product originated from (R,R)-Salen Co(III) catalyzed hydrolytic kinetic resolution (HKR) of (±)-epichlorohydrin. (R)-4 was utilized as a chiral starting material to prepare the key intermediate cyclic sulfite ((R)-S). The new synthetic approach demonstrated an efficient utilization of organic by-product for the asymmetric synthesis of bioactive compounds.
文摘As the biodiesel production is rapidly enhanced, the crude glycerol, which is by-product of biodiesel processes, is state of surplus. 1,3-PDO (1,3-propanediol), a valuable monomer of poly(trimethylene terephthalate) (PTT), can be produced from the fermentation process using crude glycerin as a carbon source. For the economic biological production of 1,3-PDO, the low cost and high efficient separation processes is essential. In this study, aqueous two-phase system composed of various hydrophilic alcohols and salt was used as a primary separation step for 1,3-PDO. It was found that the aqueous two-phase systems are easily formed with decreasing of the polarity of alcohols. The extraction efficiency is proportional to the polarity of alcohols. In case of methanol or ethanol/K2HPO4, the extraction efficiency was more than 90%.? It was concluded that the aqueous two-phase extraction using methanol or ethanol/K2HPO4 can be applied? for the primary separation of 1,3-PDO? as an alternative to a conventional primary separation processes.
文摘1,3-Propanediol is a promising renewable resource produced by microbial production. It is mainly used in many synthetic reactions, particularly applied to the polymer synthesis and cosmetics industry. We described here the isolation of strain ZH-1, which has the ability of high production with 1,3-propanediol, from Fenhe River in China. It was classified as a member of K. pneumoniae after the study of phenotypic, physio-logical, biochemical and phylogenetic (16S rDNA). The initial glycerol concentration, fermentation time and pH value of strain ZH-1 were determined to be 50 g·L<sup>-1</sup>, 36 h and 8.0. Under these conditions, the practical yield of 1,3-PD was 18.53 g·L<sup>-1</sup> and a molar yield (mol<sub>1,3-PD</sub> mol<sub>Glycerol</sub>-1</sup> of 1,3-propanediol to glycerol of 0.497. In addition, we found that for the strain ZH-1, the optimum grown pH was 9.0, so we can deter-mine that it is a new member of alkali-resistant strains.
基金Supported by the Natural Science Foundation of Hubei Province(No2005ABA053)
文摘Benzaldehyde 1,2-propanediol acetal was synthesized from benzaldehyde and 1,2-propanediol in the presence of SO42-/TiO2-MoO3-La2O3.The factors influencing the synthesis were discussed and the best conditions were found out.The optimum conditions are:molar ratio of benzaldehyde to 1,2-propanediol is 1:1.8,the quantity of catalyst is equal to 1.0% feed stock,and the reaction time is 1.0 h.SO42-/TiO2-MoO3-La2O3 is an excellent catalyst for synthesizing benzaldehyde 1,2-propanediol acetal and its yield can reach over 77.2%.
基金the financial support from the Natural Science Foundation of Shandong Province (ZR2010BQ001 and O92003110C)the National Natural Science Foundation of China (20803038)
文摘Copper catalysts supported on metal oxides display unique efficiency and selectivity in catalyzing glycerol hydrogenolysis to propanediols. Understanding the reaction at the molecular level is the key to rational design of better catalysts for propanediol synthesis, which is one of the major challenges for glycerol application in energy. In this work, extensive calculations based on periodic density functional theory were carried out to study thermodynamics of glycerol hydrogenolysis over binary model catalysts, including Cu/ZrO2 and Cu/MgO, with the focus to elucidate the competitive reaction pathways to produce the 1,2-propanediol (1,2-PDO) and 1,3-propanediol (1,3-PDO). Our results suggest that the reaction starts with glycerol dehydration on the metal oxide, followed by sequential hydrogenation over metal centers. Based on our explorations on the stabilities of adsorbed reactants, dehydrated intermediates and hydrogenated species along the reaction channels, the DFT calculations show that the 1,2-PDO formation will dominate in comparison to the 1,3-PDO from thermodynamic viewpoint. This is consistent with our experiments where the Cu catalysts seem to give the 1,2-PDO as a main product. The calculations and experiments also indicate that the Cu/MgO exhibits superior activities than Cu/ZrO2 for the hydrogenolysis of glycerol molecules.