Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks be...Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks between hydraulic and pre-existing fractures under different prepulse loading parameters remain unclear.This research investigates the impact of prepulse loading parameters,including the prepulse loading number ratio(C),prepulse loading stress ratio(S),and prepulse loading frequency(f),on the formation of fracture networks between hydraulic and pre-existing fractures,using both experimental and numerical methods.The results suggest that low prepulse loading stress ratios and high prepulse loading number ratios are advantageous loading modes.Multiple hydraulic fractures are generated in the specimen under the advantageous loading modes,facilitating the development of a complex fracture network.Fatigue damage occurs in the specimen at the prepulse loading stage.The high water pressure at the secondary conventional hydraulic fracturing promotes the growth of hydraulic fractures along the damage zones.This allows the hydraulic fractures to propagate deeply and interact with pre-existing fractures.Under advantageous loading conditions,multiple hydraulic fractures can extend to pre-existing fractures,and these hydraulic fractures penetrate or propagate along pre-existing fractures.Especially when the approach angle is large,the damage range in the specimen during the prepulse loading stage increases,resulting in the formation of more hydraulic fractures.展开更多
The crack initiation and early propagation are of great significance to the overall fatigue life of material.In order to investigate the anisotropic fracture behavior of laser metal deposited Ti-6Al-4V alloy(LMD Ti64)...The crack initiation and early propagation are of great significance to the overall fatigue life of material.In order to investigate the anisotropic fracture behavior of laser metal deposited Ti-6Al-4V alloy(LMD Ti64)during the early stage,the fourpoint bending fatigue test was carried out on specimens of three different directions,as well as the forged specimens.The results indicate the anisotropic crack initiation and early propagation of LMD Ti64.The direction perpendicular to the deposition direction exhibits a better fatigue resistance than the other two.The crack initiation position and propagation path are dominated by the microstructure in the vicinity of U-notch.LMD Ti64 has a typical small crack effect,and the early crack propagation velocities in three directions are similar.Affected by the slip system of LMD Ti64,secondary cracks frequently occur,which are often found to have an angle of 60°to the main crack.The electron backscatter diffraction analysis indicates that LMD Ti64 has preferred orientations,i.e.,strong 0001//Z texture and 001//Z texture.Their crystallographic orientation will change as the direction of columnarβgrains turns over,resulting in the fatigue anisotropy of LMD Ti64 in crack initiation and early crack propagation process.展开更多
The acoustic wave propagation in gas-saturated double-porosity materials composed of a microporous matrix and mesopores with arrays of plate-type resonators is investigated.A macroscopic description,established with t...The acoustic wave propagation in gas-saturated double-porosity materials composed of a microporous matrix and mesopores with arrays of plate-type resonators is investigated.A macroscopic description,established with the two-scale asymptotic homogenization method,evidences the combined effect of inner resonances on the acoustic properties of the respective effective visco-thermal fluid.One type of resonance originates from strong pore-scale fluid-structure interaction,while the other one arises from pressure diffusion.These phenomena respectively cause weakly and highly damped resonances,which are activated by internal momentum or mass sources,and can largely influence,depending on the material's morphology,either the effective fluid's dynamic density,compressibility,or both.We introduce semi-analytical models to illustrate the key effective properties of the studied multiscale metamaterials.The results provide insights for the bottom-up design of multiscale acoustic metamaterials with exotic behaviors,such as the negative,very slow,or supersonic phase velocity,as well as sub-wavelength bandgaps.展开更多
The approximately 3000 km long Tan-Lu fault zone(TLFZ)in East Asia is the longest continental strike-slip fault zone in the world and exemplifies how such a fault zone forms and propagates on a continental scale.Struc...The approximately 3000 km long Tan-Lu fault zone(TLFZ)in East Asia is the longest continental strike-slip fault zone in the world and exemplifies how such a fault zone forms and propagates on a continental scale.Structural and geochronological data from the TLFZ and surrounding regions indicate that the fault zone originated as NE/SW-striking sinistral ductile shear zones along an oblique continental convergence margin during the Triassic indentation collision between the North China Craton and the Yangtze Block.The Triassic fault zone,with a total length of about 720 km between the Dabie and Sulu orogens,exhibited an apparent sinistral offset of approximately 300 km along the TLFZ.The second stage of sinistral movement occurred in the earliest Late Jurassic,reactivating the pre-existing southern segment and propagating northwards to the southern coastline of present-day Bohai Bay,as well as forming a significant portion of the Dunhua-Mishan fault zone.The third stage of sinistral movement,in the earliest Early Cretaceous,was the most intense strike-slip movement of the Mesozoic,leading to the complete linkage of the TLFZ.This stage included further northward propagation of the southern-middle segment,both southward and northward propagation of the Dunhua-Mishan fault zone,as well as the formation of the entire Yilan-Yitong fault zone.The fourth stage,in the earliest Late Cretaceous,involved the reactivation of the entire TLFZ.Following its Triassic origin due to the indentation collision,the subduction of the Paleo-Pacific Plate and the subduction and closure of the Mongol-Okhotsk Ocean were responsible for the multi-stage sinistral movements from the Late Jurassic to the Cretaceous.The evolution of the TLFZ demonstrates that a continental-scale strike-slip fault zone(>1000 km long)forms through multiple stages of propagation and linkage in dynamic settings of plate convergence.展开更多
The southern part of East Siberia(SES)is highly vulnerable to flooding caused by the extreme precipitation events(EPEs)during summer.Building on previously detected EPEs in SES and Mongolia,we examined wave propagatio...The southern part of East Siberia(SES)is highly vulnerable to flooding caused by the extreme precipitation events(EPEs)during summer.Building on previously detected EPEs in SES and Mongolia,we examined wave propagation patterns for two periods:1982-98 and 1999-2019.Our analysis revealed distinct wave train configurations and geopotential anomalies preceding EPEs,with an increase in wave activity flux across the Northern Hemisphere,followed by a subsequent decrease during EPEs.Consequently,Eastern Siberia has experienced a significant rise in wave activity.Based on geopotential anomalies over Central Siberia accompanying EPEs,we identified two main types.The first,the ridge type,is predominant during the first period and features a meridional contrast with a positive geopotential(and temperature)anomaly over Central Siberia and a negative anomaly over the subtropical regions along the same longitude.The second type,termed the trough type,is more typical for the second period.It involves either a negative geopotential anomaly or the zonal proximity of positive and negative geopotential anomalies over Central Siberia.The trough type,marked by zonally oriented anomalies in geopotential and temperature,results in a more pronounced temperature decrease before EPEs and significant zonal temperature contrasts.Further,it is related to more stationary waves over Northern Eurasia,with persistent positive geopotential anomalies over Europe linked to quasi-stationary troughs over Central Siberia and positive anomalies east of Lake Baikal.Our findings align with shifts in boreal summer teleconnection patterns,reflecting significant changes in wave propagation patterns that have occurred since the late 1990s.展开更多
Hydraulic fracture(HF)formed in rock significantly helps with the development of geo-energy and georesources.The HF formation condition was challenging to understand,with obscure rock micro-cracking mechanisms being a...Hydraulic fracture(HF)formed in rock significantly helps with the development of geo-energy and georesources.The HF formation condition was challenging to understand,with obscure rock micro-cracking mechanisms being a key factor.The rock micro-cracking mechanism under gradient pore water pressure was analyzed on the scale of mineral particles and it was combined with macroscopic boundary conditions of rock hydraulic fracturing,obtaining the propagation criterion of HF in rock based on the rock micro-cracking mechanism which was verified by experiment.The results show that the disturbed skeleton stress induced by the disturbance of gradient pore water pressure in rock equals the pore water pressure difference.The overall range of the defined mechanical shape factor a/b is around 1,but greater than0.5.Under the combined influence of pore water pressure differences and macroscopic boundary stresses on the rock micro-cracking,micro-cracks form among rock mineral particles,micro-cracks connect to form micro-hydraulic fracture surfaces,and micro-hydraulic fracture surfaces open to form macrohydraulic fractures.HF begins to form at the micro-cracking initiation pressure(MCIP),which was tested by keeping the HF tip near the initiation point.The theoretical value of MCIP calculated by the proposed propagation criterion is close to MCIP tested.展开更多
The Rock-soil interface is a common geological interface.Due to mechanical differences between soil and rock,the stress waves generated by underground blasting undergo intense polarization when crossing the rock-soil ...The Rock-soil interface is a common geological interface.Due to mechanical differences between soil and rock,the stress waves generated by underground blasting undergo intense polarization when crossing the rock-soil interface,making propagation laws difficult to predict.Currently,the characteristics of the impact of the rock-soil interface on blasting stress waves remain unclear.Therefore,the vibration field caused by cylindrical charge blasting in elastic rock and partial-saturation poro-viscoelastic soil was solved.A forward algorithm for the underground blasting vibration field in rock-soil sites was proposed,considering medium damping and geometric diffusion effects of stress waves.Further investigation into the influence of rock and soil parameters and blasting source parameters revealed the following conclusions:stress waves in soil exhibit dispersion,causing peak particle velocity(PPV)to display a discrete distribution.Soil parameters affect PPV attenuation only within the soil,while blasting source parameters affect PPV attenuation throughout the entire site.Multi-wave coupling effects induced by the rocksoil interface result in zones of enhanced and attenuated PPV within the site.The size of the enhancement zone is inversely correlated with the distance from the blasting source and positively correlated with the blasting source attenuation rate and burial depth,providing guidance for selecting explosives and blasting positions.Additionally,PPV attenuation rate increases with distance from the rock-soil interface,but an amplification effect occurs near the interface,most noticeable at 0.1 m.Thus,a sufficient safety distance from the rock-soil interface is necessary during underground blasting.展开更多
The oil and gas industry is increasingly focusing on exploring and developing resources in deep earth layers.At high temperatures,confining pressures,and geostress differences,rock has the mechanical characteristics o...The oil and gas industry is increasingly focusing on exploring and developing resources in deep earth layers.At high temperatures,confining pressures,and geostress differences,rock has the mechanical characteristics of plastic enhancement,which leads to the unclear mechanism of hydraulic fracture expansion.The current fracturing model and construction design lack pertinence,and the fracturing reform is difficult to achieve the expected effect.This paper established a model of elastoplastic hydraulic fracture propagation in deep reservoirs.It considered the enhancement of plasticity by examining the elastoplastic deformation and nonlinear fracturing characteristics of the rock.The results confirmed that the hydraulic fractures in deep reservoirs propagated due to plastic energy dissipation after fracture tip passivation,while the stress concentration declined,which increased propagation resistance.The relationship between geology,engineering factors,degree of plasticity,and fracture propagation is discussed,while the conditions that promote fracture propagation are analyzed to provide theoretical support for deep reservoir fracturing design.展开更多
Based on the finite element-discrete element numerical method,a numerical model of fracture propagation in deflagration fracturing was established by considering the impact of stress wave,quasi-static pressure of expl...Based on the finite element-discrete element numerical method,a numerical model of fracture propagation in deflagration fracturing was established by considering the impact of stress wave,quasi-static pressure of explosive gas,and reflection of stress wave.The model was validated against the results of physical experiments.Taking the shale reservoirs of Silurian Longmaxi Formation in Luzhou area of the Sichuan Basin as an example,the effects of in-situ stress difference,natural fracture parameters,branch wellbore spacing,delay detonation time,and angle between branch wellbore and main wellbore on fracture propagation were identified.The results show that the fracture propagation morphology in deflagration fracturing is less affected by the in-situ stress difference when it is 5-15 MPa,and the tendency of fracture intersection between branch wellbores is significantly weakened when the in-situ stress difference reaches 20 MPa.The increase of natural fracture length promotes the fracture propagation along the natural fracture direction,while the increase of volumetric natural fracture density and angle limits the fracture propagation area and reduces the probability of fracture intersection between branch wells.The larger the branch wellbore spacing,the less probability of the fracture intersection between branch wells,allowing for the fracture propagation in multiple directions.Increasing the delay detonation time decreases the fracture spacing between branch wellbores.When the angle between the branch wellbore and the main wellbore is 45°and 90°,there is a tendency of fracture intersection between branch wellbores.展开更多
Due to the invisibility and complexity of the underground spaces,monitoring the propagation and filling characteristics of the grouting slurry post the water–sand mixture inrush in metal mines is challenging,which co...Due to the invisibility and complexity of the underground spaces,monitoring the propagation and filling characteristics of the grouting slurry post the water–sand mixture inrush in metal mines is challenging,which complicates engineering treatment.This research investigated the propagation law of cement-sodium silicate slurry under flowing water conditions within the caving mass of a metal mine.First,based on borehole packer test results and borehole TV images,the fractured strata before grouting were classified into four types:cavity,hidden,fissure,and complete.Second,an orthogonal experimental design was employed to evaluate the impact of four key factors—stratigraphic fragmentation,water flow rate,grouting flow rate,and water-cement ratio—on the efficacy of grouting within a caving mass at the site.The results indicate that the factors influencing grouting efficacy are ranked in the following order of importance:stratigraphic fragmentation>water flow rate>water–cement ratio>grouting flow rate.Ultimately,five propagation filling modes—pure slurry,big crack,small crack,small karst pore,and pore penetration—were identified by examining the propagation filling characteristics of slurry in rock samples,incorporating microscopic material structure analysis through scanning electron microscopy and energy spectrum analysis.The findings of this study provide valuable insights into selecting engineering treatment parameters and methodologies,serving as a reference for preventing and controlling water–sand mixture inrush in metal mines,thereby enhancing treatment efficacy and ensuring grouting success.展开更多
The diversity of interlayers in shale oil reservoir leads to a low degree of vertical reconstruction.This paper aims to propose a method to guide the synchronous initiation of hydraulic fractures in different layers b...The diversity of interlayers in shale oil reservoir leads to a low degree of vertical reconstruction.This paper aims to propose a method to guide the synchronous initiation of hydraulic fractures in different layers by drilling multi-layer radial wells in spatial positions,and to form a fracture network that satisfies the vertical propagation range and complexity.In this paper,a 3D(three-dimensional)multi-layer radial well fracturing model considering fluid-mechanics coupling is established and the properties of shale oil reservoir are characterized according to the field geological profile.The influences of radial well spacing,fracturing fluid injection rate,and fracturing fluid viscosity on vertical fracture communication in multilayer radial wells are investigated.The results show that the radial well has the characteristics of guiding fracture penetrating interlayers.Reducing radial well spacing and appropriately increasing injection rate and viscosity are beneficial to improving vertical fracture propagation ability.However,high fracture fluid viscosity under the same displacement will lead to a significant increase in fracture aperture and weaken the total fracture area.In addition,if the stress interference around the radial wells is low,the radial well can be located in the middle of each layer to minimize the fracture height limitation.This study can provide a solution idea for vertical propagation limitation of hydraulic fractures in shale oil reservoir.展开更多
Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or ...Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or faces struggle with complex 3D models because edge-based approaches miss global contexts and face-based methods overlook variations in adjacent areas,which affects the overall precision.To address these issues,we propose the Feature Discrimination and Context Propagation Network(FDCPNet),which is a novel approach that synergistically integrates local and global features in mesh datasets.Methods FDCPNet is composed of two modules:(1)the Feature Discrimination Module,which employs an attention mechanism to enhance the identification of key local features,and(2)the Context Propagation Module,which enriches key local features by integrating global contextual information,thereby facilitating a more detailed and comprehensive representation of crucial areas within the mesh model.Results Experiments on popular datasets validated the effectiveness of FDCPNet,showing an improvement in the classification accuracy over the baseline MeshNet.Furthermore,even with reduced mesh face numbers and limited training data,FDCPNet achieved promising results,demonstrating its robustness in scenarios of variable complexity.展开更多
China's shale oil and gas resources are widely distributed in shale-sandstone interbedded reservoirs,whose complex lithology and strong heterogeneity pose significant challenges to hydraulic fracturing design.To a...China's shale oil and gas resources are widely distributed in shale-sandstone interbedded reservoirs,whose complex lithology and strong heterogeneity pose significant challenges to hydraulic fracturing design.To address issues such as the difficulty in controlling fracture height and the challenge of forming an effective fracture network,this study utilizes synthetic rock samples that can represent the characteristics of interbedded reservoirs and investigates the initiation and propagation of hydraulic fractures under different viscosity,injection rate,and construction scheme.By combining real-time monitoring of injection pressure with acoustic emission,the temporal and spatial evolution characteristics of hydraulic fractures as well as the mechanisms of their vertical and horizontal extension are revealed.The results indicate that a higher fracturing fluid viscosity is essential for ensuring the vertical cross-layer propagation of hydraulic fractures,while a lower fluid viscosity facilitates the activation of weak interlayer surfaces,promoting sufficient horizontal propagation along these planes and forming branched fractures.Although a higher injection rate enhances the vertical cross-layer propagation of hydraulic fractures,it also causes greater diversion of the main fracture plane,resulting in simpler fracture morphology and limiting the stimulation effect.Additionally,an alternating injection of high and low viscosity fracturing fluids allows hydraulic fractures to both break through weak interlayer surfaces and achieve uniform horizontal propagation,resulting in a more complex fracture morphology.The findings are expected to provide a scientific basis and practical guidance for optimizing hydraulic fracturing designs in interbedded reservoir conditions.展开更多
Developing low-permeability Coalbed Methane(CBM)reservoirs can significantly benefit from a comprehensive understanding of hydraulic fracture nucleation and propagation mechanisms,particularly in anthracite CBM reserv...Developing low-permeability Coalbed Methane(CBM)reservoirs can significantly benefit from a comprehensive understanding of hydraulic fracture nucleation and propagation mechanisms,particularly in anthracite CBM reservoirs.This study employs true-triaxial hydraulic fracturing experiments to investigate these mechanisms,with variables including injection flow rate,horizontal stress difference(σH-σh),and bedding orientation.Additionally,we conduct corresponding numerical cases to validate the experimental conclusions.The research also considers re-fracturing instances.For the first time,we utilize a combination of Kaiser tests and the stress transfer function in ANSYS Workbench finite element analysis to accurately restore the confining pressure of the coal sample.The findings suggest that a high initial injection flow rate during hydraulic fracturing can promote fluid leakage and aid in maintaining substantial fracture pressure.Enhanced fracturing efficiency can be achieved through higher injection rates,and it can ensure optimal fracturing efficiency,minimizing roof and floor fracturing in coal reservoirs to prevent fracturing fluid leakage.The presence of a high horizontal stress difference facilitates hydraulic fracture propagation along the direction of the maximum horizontal compressive stress,requiring a greater hydraulic pressure to produce more fracture systems in coal reservoirs.Additionally,a minor deviation in the wellbore injection direction from the bedding orientation assists in creating a complex hydraulic fractured network,although this also requires higher hydraulic pressure to initiate new fractures.In the case of multiple hydraulic fracturing,the second initiation pressure tends to be significantly higher than the first,indicating that a sequential increase in hydraulic pressure aids the formation of additional fractures.Moreover,a simplified numerical simulation has been conducted to corroborate the experimental findings.These insights are crucial in optimizing hydraulic fracturing processes to enhance the permeability of anthracite CBM reservoirs.展开更多
Based on continuum-discontinuum element method,the numerical simulation of fracture propagation during deflagration-hydraulic composite fracturing was constructed by considering deflagration stress impact induced frac...Based on continuum-discontinuum element method,the numerical simulation of fracture propagation during deflagration-hydraulic composite fracturing was constructed by considering deflagration stress impact induced fracture creation,deflagrating gas driven fracture propagation,and hydraulic fracture propagation,exploring the effects of in-situ stress difference,deflagration peak pressure,deflagration pressurization rate,hydraulic fracturing displacement and hydraulic fracturing fluid viscosity on fracture propagation in deflagration-hydraulic composite fracturing.The deflagration-hydraulic composite fracturing combines the advantages of deflagration fracturing in creating complex fractures near wells and the deep penetration of hydraulic fracturing at the far-field region,which can form multiple deep penetrating long fractures with better stimulation effects.With the increase of in-situ stress difference,the stimulated area of deflagration-hydraulic composite fracturing is reduced,and the deflagration-hydraulic composite fracturing is more suitable for reservoirs with small in-situ stress difference.Higher peak pressure and pressurization rate are conducive to increasing the maximum fracture length and burst degree of the deflagration fractures,which in turn increases the stimulated area of deflagration-hydraulic composite fracturing and improves the stimulation effect.Increasing the displacement and viscosity of hydraulic fracturing fluid can enhance the net pressure within the fractures,activate the deflagration fractures,increase the turning radius of the fractures,generate more long fractures,and effectively increase the stimulated reservoir area.The stimulated reservoir area is not completely positively correlated with the hydraulic fracturing displacement and fracturing fluid viscosity,and there is a critical value.When the critical value is exceeded,the stimulated area decreases.展开更多
Hydraulic fracture growth is significantly influenced by the minimum horizontal principal stress gradient and the fracturing fluid pressure gradient.However,these gradients are often neglected in scaled physical model...Hydraulic fracture growth is significantly influenced by the minimum horizontal principal stress gradient and the fracturing fluid pressure gradient.However,these gradients are often neglected in scaled physical modeling experiments due to difficulties in reproducing them.This study uses centrifugal hypergravity to simulate both gradients and investigate their effects on fracture propagation.Artificial mortar specimens(ϕ200 mm×400 mm)are fractured under 1g(normal gravity),50g,and 100g.Results show that compared to 1g,fractures under 50g and 100g exhibit increasingly uneven propagation,with higher g-values leading to greater asymmetry.To interpret this,a theoretical analysis based on fracture mechanics is conducted.When the fluid pressure gradient exceeds the stress gradient,a positive net gradient is generated,increasing net pressure at the lower fracture tip.This raises the stress intensity factor at the lower tip,promoting downward growth.As g increases,the disparity becomes more significant,resulting in greater fracture deviation.In conclusion,this study,for the first time,has verified and explained that the net gradient can change the propagation of hydraulic fractures,providing important guidance for wellbore placement under stress gradients.展开更多
Rock discontinuities such as joints widely exist in natural rock masses,and wave attenuation through rock masses is mainly caused by discontinuities.The displacement discontinuity model(DDM)has been widely used in the...Rock discontinuities such as joints widely exist in natural rock masses,and wave attenuation through rock masses is mainly caused by discontinuities.The displacement discontinuity model(DDM)has been widely used in theoretical and numerical analysis of wave propagation across rock discontinuity.However,the circumstance under which the DDM is applicable to predict wave propagation across rock discontinuity remains poorly understood.In this study,theoretical analysis and ultrasonic laboratory tests were carried out to examine the theoretical applicability of the DDM for wave propagation,where specimens with rough joints comprising regular rectangular asperities of different spacings and heights were prepared by 3D printing technology.It is found that the theoretical applicability of the DDM to predict wave propagation across rock discontinuity is determined by three joint parameters,i.e.the dimensionless asperity spacing(L),the dimensionless asperity height(H)and the groove density(D).Through theoretical analysis and laboratory tests,the conditions under which the DDM is applicable are derived as follows:and,.With increase in the groove density,the thresholds of the dimensionless asperity spacing and the dimensionless asperity height show a decreasing trend.In addition,the transmission coefficient in the frequency domain decreases with increasing groove density,dimensionless asperity spacing or dimensionless asperity height.The findings can facilitate our understanding of DDM for predicting wave propagation across rock discontinuity.展开更多
To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartogra...To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.展开更多
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to...We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation.展开更多
This study investigates the fatigue crack propagation mechanism of a new high-strength and high-tough Ti-Mo-Cr-V-Nb-Al titanium alloy with three types of microstructures(basketweave structure,lamellar structure,and bi...This study investigates the fatigue crack propagation mechanism of a new high-strength and high-tough Ti-Mo-Cr-V-Nb-Al titanium alloy with three types of microstructures(basketweave structure,lamellar structure,and bimodal structure)through fatigue crack propagation rate tests and fatigue threshold value tests.The resistance of the alloy to fatigue crack propagation was found to be closely correlated with the morphology and distribution ofαparticles,as evidenced by microscopic examination of fracture surfaces and analysis of crack propagation paths.The primaryαparticles demonstrated superior resistance to crack propagation compared to the secondaryαparticles.The basketweave structure showed exceptional resistance to fatigue crack propagation at all stages.The lamellar structure mainly resists long crack propagation during rapid propagation,and its threshold value is the lowest,which makes it easy to produce microcrack propagation.On the contrary,the bimodal structure has the highest threshold value among the three,so its resistance to short crack growth is more excellent,but it has the highest crack growth rate in the higher stress intensity factor range.Theαparticles in the three microstructures also undergo rotational motion relative to the force axis during fatigue crack propagation,thereby adjusting the uneven stress distribution betweenα/βphases through slip behavior and further coordinating deformation.展开更多
基金financially supported by,the Fundamental Research Funds for the Central Universities(Grant No.2023QN1064)the China Postdoctoral Science Foundation(Grant No.2023M733772)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB847)。
文摘Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks between hydraulic and pre-existing fractures under different prepulse loading parameters remain unclear.This research investigates the impact of prepulse loading parameters,including the prepulse loading number ratio(C),prepulse loading stress ratio(S),and prepulse loading frequency(f),on the formation of fracture networks between hydraulic and pre-existing fractures,using both experimental and numerical methods.The results suggest that low prepulse loading stress ratios and high prepulse loading number ratios are advantageous loading modes.Multiple hydraulic fractures are generated in the specimen under the advantageous loading modes,facilitating the development of a complex fracture network.Fatigue damage occurs in the specimen at the prepulse loading stage.The high water pressure at the secondary conventional hydraulic fracturing promotes the growth of hydraulic fractures along the damage zones.This allows the hydraulic fractures to propagate deeply and interact with pre-existing fractures.Under advantageous loading conditions,multiple hydraulic fractures can extend to pre-existing fractures,and these hydraulic fractures penetrate or propagate along pre-existing fractures.Especially when the approach angle is large,the damage range in the specimen during the prepulse loading stage increases,resulting in the formation of more hydraulic fractures.
基金National Natural Science Foundation of China(12172292,12072287)。
文摘The crack initiation and early propagation are of great significance to the overall fatigue life of material.In order to investigate the anisotropic fracture behavior of laser metal deposited Ti-6Al-4V alloy(LMD Ti64)during the early stage,the fourpoint bending fatigue test was carried out on specimens of three different directions,as well as the forged specimens.The results indicate the anisotropic crack initiation and early propagation of LMD Ti64.The direction perpendicular to the deposition direction exhibits a better fatigue resistance than the other two.The crack initiation position and propagation path are dominated by the microstructure in the vicinity of U-notch.LMD Ti64 has a typical small crack effect,and the early crack propagation velocities in three directions are similar.Affected by the slip system of LMD Ti64,secondary cracks frequently occur,which are often found to have an angle of 60°to the main crack.The electron backscatter diffraction analysis indicates that LMD Ti64 has preferred orientations,i.e.,strong 0001//Z texture and 001//Z texture.Their crystallographic orientation will change as the direction of columnarβgrains turns over,resulting in the fatigue anisotropy of LMD Ti64 in crack initiation and early crack propagation process.
基金Project supported by the Chilean National Agency for Research and Development(ANID)through Grants ANID FONDECYT Regular(Nos.1211310 and 1250496)ANID Anillo de Tecnologia(No.ACT240015)the Polish National Science Centre(NCN)through Grant Agreement(No.2021/41/B/ST8/04492)。
文摘The acoustic wave propagation in gas-saturated double-porosity materials composed of a microporous matrix and mesopores with arrays of plate-type resonators is investigated.A macroscopic description,established with the two-scale asymptotic homogenization method,evidences the combined effect of inner resonances on the acoustic properties of the respective effective visco-thermal fluid.One type of resonance originates from strong pore-scale fluid-structure interaction,while the other one arises from pressure diffusion.These phenomena respectively cause weakly and highly damped resonances,which are activated by internal momentum or mass sources,and can largely influence,depending on the material's morphology,either the effective fluid's dynamic density,compressibility,or both.We introduce semi-analytical models to illustrate the key effective properties of the studied multiscale metamaterials.The results provide insights for the bottom-up design of multiscale acoustic metamaterials with exotic behaviors,such as the negative,very slow,or supersonic phase velocity,as well as sub-wavelength bandgaps.
基金funded by the Ministry of Science and Technology of the People's Republic of China(Grant 2024ZD1001301)the National Natural Science Foundation of China(Grants 42272241,42102254 and 41830213)the Fundamental Research Funds for the Central Universities(Grant JZ2023HGTB0238).
文摘The approximately 3000 km long Tan-Lu fault zone(TLFZ)in East Asia is the longest continental strike-slip fault zone in the world and exemplifies how such a fault zone forms and propagates on a continental scale.Structural and geochronological data from the TLFZ and surrounding regions indicate that the fault zone originated as NE/SW-striking sinistral ductile shear zones along an oblique continental convergence margin during the Triassic indentation collision between the North China Craton and the Yangtze Block.The Triassic fault zone,with a total length of about 720 km between the Dabie and Sulu orogens,exhibited an apparent sinistral offset of approximately 300 km along the TLFZ.The second stage of sinistral movement occurred in the earliest Late Jurassic,reactivating the pre-existing southern segment and propagating northwards to the southern coastline of present-day Bohai Bay,as well as forming a significant portion of the Dunhua-Mishan fault zone.The third stage of sinistral movement,in the earliest Early Cretaceous,was the most intense strike-slip movement of the Mesozoic,leading to the complete linkage of the TLFZ.This stage included further northward propagation of the southern-middle segment,both southward and northward propagation of the Dunhua-Mishan fault zone,as well as the formation of the entire Yilan-Yitong fault zone.The fourth stage,in the earliest Late Cretaceous,involved the reactivation of the entire TLFZ.Following its Triassic origin due to the indentation collision,the subduction of the Paleo-Pacific Plate and the subduction and closure of the Mongol-Okhotsk Ocean were responsible for the multi-stage sinistral movements from the Late Jurassic to the Cretaceous.The evolution of the TLFZ demonstrates that a continental-scale strike-slip fault zone(>1000 km long)forms through multiple stages of propagation and linkage in dynamic settings of plate convergence.
文摘The southern part of East Siberia(SES)is highly vulnerable to flooding caused by the extreme precipitation events(EPEs)during summer.Building on previously detected EPEs in SES and Mongolia,we examined wave propagation patterns for two periods:1982-98 and 1999-2019.Our analysis revealed distinct wave train configurations and geopotential anomalies preceding EPEs,with an increase in wave activity flux across the Northern Hemisphere,followed by a subsequent decrease during EPEs.Consequently,Eastern Siberia has experienced a significant rise in wave activity.Based on geopotential anomalies over Central Siberia accompanying EPEs,we identified two main types.The first,the ridge type,is predominant during the first period and features a meridional contrast with a positive geopotential(and temperature)anomaly over Central Siberia and a negative anomaly over the subtropical regions along the same longitude.The second type,termed the trough type,is more typical for the second period.It involves either a negative geopotential anomaly or the zonal proximity of positive and negative geopotential anomalies over Central Siberia.The trough type,marked by zonally oriented anomalies in geopotential and temperature,results in a more pronounced temperature decrease before EPEs and significant zonal temperature contrasts.Further,it is related to more stationary waves over Northern Eurasia,with persistent positive geopotential anomalies over Europe linked to quasi-stationary troughs over Central Siberia and positive anomalies east of Lake Baikal.Our findings align with shifts in boreal summer teleconnection patterns,reflecting significant changes in wave propagation patterns that have occurred since the late 1990s.
基金supported by the National Key Research and Development Program of China (No.2021YFC2902102)the National Natural Science Foundation of China (Nos.52374103 and 52274013)。
文摘Hydraulic fracture(HF)formed in rock significantly helps with the development of geo-energy and georesources.The HF formation condition was challenging to understand,with obscure rock micro-cracking mechanisms being a key factor.The rock micro-cracking mechanism under gradient pore water pressure was analyzed on the scale of mineral particles and it was combined with macroscopic boundary conditions of rock hydraulic fracturing,obtaining the propagation criterion of HF in rock based on the rock micro-cracking mechanism which was verified by experiment.The results show that the disturbed skeleton stress induced by the disturbance of gradient pore water pressure in rock equals the pore water pressure difference.The overall range of the defined mechanical shape factor a/b is around 1,but greater than0.5.Under the combined influence of pore water pressure differences and macroscopic boundary stresses on the rock micro-cracking,micro-cracks form among rock mineral particles,micro-cracks connect to form micro-hydraulic fracture surfaces,and micro-hydraulic fracture surfaces open to form macrohydraulic fractures.HF begins to form at the micro-cracking initiation pressure(MCIP),which was tested by keeping the HF tip near the initiation point.The theoretical value of MCIP calculated by the proposed propagation criterion is close to MCIP tested.
基金supported by the National Natural Science Foundation of China(Grant Nos.41972286 and 42102329).
文摘The Rock-soil interface is a common geological interface.Due to mechanical differences between soil and rock,the stress waves generated by underground blasting undergo intense polarization when crossing the rock-soil interface,making propagation laws difficult to predict.Currently,the characteristics of the impact of the rock-soil interface on blasting stress waves remain unclear.Therefore,the vibration field caused by cylindrical charge blasting in elastic rock and partial-saturation poro-viscoelastic soil was solved.A forward algorithm for the underground blasting vibration field in rock-soil sites was proposed,considering medium damping and geometric diffusion effects of stress waves.Further investigation into the influence of rock and soil parameters and blasting source parameters revealed the following conclusions:stress waves in soil exhibit dispersion,causing peak particle velocity(PPV)to display a discrete distribution.Soil parameters affect PPV attenuation only within the soil,while blasting source parameters affect PPV attenuation throughout the entire site.Multi-wave coupling effects induced by the rocksoil interface result in zones of enhanced and attenuated PPV within the site.The size of the enhancement zone is inversely correlated with the distance from the blasting source and positively correlated with the blasting source attenuation rate and burial depth,providing guidance for selecting explosives and blasting positions.Additionally,PPV attenuation rate increases with distance from the rock-soil interface,but an amplification effect occurs near the interface,most noticeable at 0.1 m.Thus,a sufficient safety distance from the rock-soil interface is necessary during underground blasting.
基金The Youth Science Fund Project of National Natural Science Foundation of China,52404027,Jinbo Lithe General Program of the National Natural Science Foundation of China,52274036,Suling Wang。
文摘The oil and gas industry is increasingly focusing on exploring and developing resources in deep earth layers.At high temperatures,confining pressures,and geostress differences,rock has the mechanical characteristics of plastic enhancement,which leads to the unclear mechanism of hydraulic fracture expansion.The current fracturing model and construction design lack pertinence,and the fracturing reform is difficult to achieve the expected effect.This paper established a model of elastoplastic hydraulic fracture propagation in deep reservoirs.It considered the enhancement of plasticity by examining the elastoplastic deformation and nonlinear fracturing characteristics of the rock.The results confirmed that the hydraulic fractures in deep reservoirs propagated due to plastic energy dissipation after fracture tip passivation,while the stress concentration declined,which increased propagation resistance.The relationship between geology,engineering factors,degree of plasticity,and fracture propagation is discussed,while the conditions that promote fracture propagation are analyzed to provide theoretical support for deep reservoir fracturing design.
基金Supported by the National Natural Science Foundation of China(52374004)National Key R&D Program of China(2023YFF0614102,2023YFE0110900).
文摘Based on the finite element-discrete element numerical method,a numerical model of fracture propagation in deflagration fracturing was established by considering the impact of stress wave,quasi-static pressure of explosive gas,and reflection of stress wave.The model was validated against the results of physical experiments.Taking the shale reservoirs of Silurian Longmaxi Formation in Luzhou area of the Sichuan Basin as an example,the effects of in-situ stress difference,natural fracture parameters,branch wellbore spacing,delay detonation time,and angle between branch wellbore and main wellbore on fracture propagation were identified.The results show that the fracture propagation morphology in deflagration fracturing is less affected by the in-situ stress difference when it is 5-15 MPa,and the tendency of fracture intersection between branch wellbores is significantly weakened when the in-situ stress difference reaches 20 MPa.The increase of natural fracture length promotes the fracture propagation along the natural fracture direction,while the increase of volumetric natural fracture density and angle limits the fracture propagation area and reduces the probability of fracture intersection between branch wells.The larger the branch wellbore spacing,the less probability of the fracture intersection between branch wells,allowing for the fracture propagation in multiple directions.Increasing the delay detonation time decreases the fracture spacing between branch wellbores.When the angle between the branch wellbore and the main wellbore is 45°and 90°,there is a tendency of fracture intersection between branch wellbores.
基金The National Natural Science Foundation of China,Grant/Award Number:42130706。
文摘Due to the invisibility and complexity of the underground spaces,monitoring the propagation and filling characteristics of the grouting slurry post the water–sand mixture inrush in metal mines is challenging,which complicates engineering treatment.This research investigated the propagation law of cement-sodium silicate slurry under flowing water conditions within the caving mass of a metal mine.First,based on borehole packer test results and borehole TV images,the fractured strata before grouting were classified into four types:cavity,hidden,fissure,and complete.Second,an orthogonal experimental design was employed to evaluate the impact of four key factors—stratigraphic fragmentation,water flow rate,grouting flow rate,and water-cement ratio—on the efficacy of grouting within a caving mass at the site.The results indicate that the factors influencing grouting efficacy are ranked in the following order of importance:stratigraphic fragmentation>water flow rate>water–cement ratio>grouting flow rate.Ultimately,five propagation filling modes—pure slurry,big crack,small crack,small karst pore,and pore penetration—were identified by examining the propagation filling characteristics of slurry in rock samples,incorporating microscopic material structure analysis through scanning electron microscopy and energy spectrum analysis.The findings of this study provide valuable insights into selecting engineering treatment parameters and methodologies,serving as a reference for preventing and controlling water–sand mixture inrush in metal mines,thereby enhancing treatment efficacy and ensuring grouting success.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52074315 and 52122401)Moreover,the authors also thank the financial support from China Scholarship Council(Grant No.202306440033).
文摘The diversity of interlayers in shale oil reservoir leads to a low degree of vertical reconstruction.This paper aims to propose a method to guide the synchronous initiation of hydraulic fractures in different layers by drilling multi-layer radial wells in spatial positions,and to form a fracture network that satisfies the vertical propagation range and complexity.In this paper,a 3D(three-dimensional)multi-layer radial well fracturing model considering fluid-mechanics coupling is established and the properties of shale oil reservoir are characterized according to the field geological profile.The influences of radial well spacing,fracturing fluid injection rate,and fracturing fluid viscosity on vertical fracture communication in multilayer radial wells are investigated.The results show that the radial well has the characteristics of guiding fracture penetrating interlayers.Reducing radial well spacing and appropriately increasing injection rate and viscosity are beneficial to improving vertical fracture propagation ability.However,high fracture fluid viscosity under the same displacement will lead to a significant increase in fracture aperture and weaken the total fracture area.In addition,if the stress interference around the radial wells is low,the radial well can be located in the middle of each layer to minimize the fracture height limitation.This study can provide a solution idea for vertical propagation limitation of hydraulic fractures in shale oil reservoir.
基金Supported by the National Key R&D Program of China(2022YFC3803600).
文摘Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or faces struggle with complex 3D models because edge-based approaches miss global contexts and face-based methods overlook variations in adjacent areas,which affects the overall precision.To address these issues,we propose the Feature Discrimination and Context Propagation Network(FDCPNet),which is a novel approach that synergistically integrates local and global features in mesh datasets.Methods FDCPNet is composed of two modules:(1)the Feature Discrimination Module,which employs an attention mechanism to enhance the identification of key local features,and(2)the Context Propagation Module,which enriches key local features by integrating global contextual information,thereby facilitating a more detailed and comprehensive representation of crucial areas within the mesh model.Results Experiments on popular datasets validated the effectiveness of FDCPNet,showing an improvement in the classification accuracy over the baseline MeshNet.Furthermore,even with reduced mesh face numbers and limited training data,FDCPNet achieved promising results,demonstrating its robustness in scenarios of variable complexity.
基金supported by the National Key Research and Development Program of China(Grant Nos.2023YFF0614102 and 2023YFE0110900)the National Natural Science Foundation of China(Grant Nos.52374004,52204005,and 52304003)the Natural Science Foundation of Sichuan Province(Grant Nos.2024NSFSC0961 and 2023NSFSC0940).
文摘China's shale oil and gas resources are widely distributed in shale-sandstone interbedded reservoirs,whose complex lithology and strong heterogeneity pose significant challenges to hydraulic fracturing design.To address issues such as the difficulty in controlling fracture height and the challenge of forming an effective fracture network,this study utilizes synthetic rock samples that can represent the characteristics of interbedded reservoirs and investigates the initiation and propagation of hydraulic fractures under different viscosity,injection rate,and construction scheme.By combining real-time monitoring of injection pressure with acoustic emission,the temporal and spatial evolution characteristics of hydraulic fractures as well as the mechanisms of their vertical and horizontal extension are revealed.The results indicate that a higher fracturing fluid viscosity is essential for ensuring the vertical cross-layer propagation of hydraulic fractures,while a lower fluid viscosity facilitates the activation of weak interlayer surfaces,promoting sufficient horizontal propagation along these planes and forming branched fractures.Although a higher injection rate enhances the vertical cross-layer propagation of hydraulic fractures,it also causes greater diversion of the main fracture plane,resulting in simpler fracture morphology and limiting the stimulation effect.Additionally,an alternating injection of high and low viscosity fracturing fluids allows hydraulic fractures to both break through weak interlayer surfaces and achieve uniform horizontal propagation,resulting in a more complex fracture morphology.The findings are expected to provide a scientific basis and practical guidance for optimizing hydraulic fracturing designs in interbedded reservoir conditions.
基金funded by the National Natural Science Foundation of China(No.42202155)China Postdoctoral Science Foundation(No.2021MD703807)+7 种基金Heilongjiang Provincial Postdoctoral Science Foundation(No.LBH-Z20121)financial support from the China Scholarship Council(No.202008230018)the Research Fund Program of Hubei Key Laboratory of Resources and Eco-Environment Geology(No.HBREGKFJJ-202309)funding by the DGICYT Spanish Project(grant no.PID2020-118999GB-I00)funded by the MCIN/AEI/10.13039/501100011033funding by the Ramón y Cajal fellowship(grant no.RyC-2018-026335-I)funded by the MCIN/AEI/10.13039/50110001103the European Social Fund-Investing in Your Future.
文摘Developing low-permeability Coalbed Methane(CBM)reservoirs can significantly benefit from a comprehensive understanding of hydraulic fracture nucleation and propagation mechanisms,particularly in anthracite CBM reservoirs.This study employs true-triaxial hydraulic fracturing experiments to investigate these mechanisms,with variables including injection flow rate,horizontal stress difference(σH-σh),and bedding orientation.Additionally,we conduct corresponding numerical cases to validate the experimental conclusions.The research also considers re-fracturing instances.For the first time,we utilize a combination of Kaiser tests and the stress transfer function in ANSYS Workbench finite element analysis to accurately restore the confining pressure of the coal sample.The findings suggest that a high initial injection flow rate during hydraulic fracturing can promote fluid leakage and aid in maintaining substantial fracture pressure.Enhanced fracturing efficiency can be achieved through higher injection rates,and it can ensure optimal fracturing efficiency,minimizing roof and floor fracturing in coal reservoirs to prevent fracturing fluid leakage.The presence of a high horizontal stress difference facilitates hydraulic fracture propagation along the direction of the maximum horizontal compressive stress,requiring a greater hydraulic pressure to produce more fracture systems in coal reservoirs.Additionally,a minor deviation in the wellbore injection direction from the bedding orientation assists in creating a complex hydraulic fractured network,although this also requires higher hydraulic pressure to initiate new fractures.In the case of multiple hydraulic fracturing,the second initiation pressure tends to be significantly higher than the first,indicating that a sequential increase in hydraulic pressure aids the formation of additional fractures.Moreover,a simplified numerical simulation has been conducted to corroborate the experimental findings.These insights are crucial in optimizing hydraulic fracturing processes to enhance the permeability of anthracite CBM reservoirs.
基金Supported by the Basic Science Center Project of the National Natural Science Foundation of China(52288101).
文摘Based on continuum-discontinuum element method,the numerical simulation of fracture propagation during deflagration-hydraulic composite fracturing was constructed by considering deflagration stress impact induced fracture creation,deflagrating gas driven fracture propagation,and hydraulic fracture propagation,exploring the effects of in-situ stress difference,deflagration peak pressure,deflagration pressurization rate,hydraulic fracturing displacement and hydraulic fracturing fluid viscosity on fracture propagation in deflagration-hydraulic composite fracturing.The deflagration-hydraulic composite fracturing combines the advantages of deflagration fracturing in creating complex fractures near wells and the deep penetration of hydraulic fracturing at the far-field region,which can form multiple deep penetrating long fractures with better stimulation effects.With the increase of in-situ stress difference,the stimulated area of deflagration-hydraulic composite fracturing is reduced,and the deflagration-hydraulic composite fracturing is more suitable for reservoirs with small in-situ stress difference.Higher peak pressure and pressurization rate are conducive to increasing the maximum fracture length and burst degree of the deflagration fractures,which in turn increases the stimulated area of deflagration-hydraulic composite fracturing and improves the stimulation effect.Increasing the displacement and viscosity of hydraulic fracturing fluid can enhance the net pressure within the fractures,activate the deflagration fractures,increase the turning radius of the fractures,generate more long fractures,and effectively increase the stimulated reservoir area.The stimulated reservoir area is not completely positively correlated with the hydraulic fracturing displacement and fracturing fluid viscosity,and there is a critical value.When the critical value is exceeded,the stimulated area decreases.
基金supports of Basic Science Center Program for Multiphase Evolution in Hyper-gravity of the National Natural Science Foundation of China(No.51988101)National Natural Science Foundation of China(Nos.52109138 and 52122403)Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001).
文摘Hydraulic fracture growth is significantly influenced by the minimum horizontal principal stress gradient and the fracturing fluid pressure gradient.However,these gradients are often neglected in scaled physical modeling experiments due to difficulties in reproducing them.This study uses centrifugal hypergravity to simulate both gradients and investigate their effects on fracture propagation.Artificial mortar specimens(ϕ200 mm×400 mm)are fractured under 1g(normal gravity),50g,and 100g.Results show that compared to 1g,fractures under 50g and 100g exhibit increasingly uneven propagation,with higher g-values leading to greater asymmetry.To interpret this,a theoretical analysis based on fracture mechanics is conducted.When the fluid pressure gradient exceeds the stress gradient,a positive net gradient is generated,increasing net pressure at the lower fracture tip.This raises the stress intensity factor at the lower tip,promoting downward growth.As g increases,the disparity becomes more significant,resulting in greater fracture deviation.In conclusion,this study,for the first time,has verified and explained that the net gradient can change the propagation of hydraulic fractures,providing important guidance for wellbore placement under stress gradients.
基金supported by the National Key R&D Program of China (No.2022YFC3004602)the National Natural Science Foundation of China (No.52325404)the Shenzhen Science and Technology Program (No.JCYJ20220818095605012).
文摘Rock discontinuities such as joints widely exist in natural rock masses,and wave attenuation through rock masses is mainly caused by discontinuities.The displacement discontinuity model(DDM)has been widely used in theoretical and numerical analysis of wave propagation across rock discontinuity.However,the circumstance under which the DDM is applicable to predict wave propagation across rock discontinuity remains poorly understood.In this study,theoretical analysis and ultrasonic laboratory tests were carried out to examine the theoretical applicability of the DDM for wave propagation,where specimens with rough joints comprising regular rectangular asperities of different spacings and heights were prepared by 3D printing technology.It is found that the theoretical applicability of the DDM to predict wave propagation across rock discontinuity is determined by three joint parameters,i.e.the dimensionless asperity spacing(L),the dimensionless asperity height(H)and the groove density(D).Through theoretical analysis and laboratory tests,the conditions under which the DDM is applicable are derived as follows:and,.With increase in the groove density,the thresholds of the dimensionless asperity spacing and the dimensionless asperity height show a decreasing trend.In addition,the transmission coefficient in the frequency domain decreases with increasing groove density,dimensionless asperity spacing or dimensionless asperity height.The findings can facilitate our understanding of DDM for predicting wave propagation across rock discontinuity.
文摘To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.
基金financially supported by the Russian federal research project No.FWZZ-2022-0026“Innovative aspects of electro-dynamics in problems of exploration and oilfield geophysics”.
文摘We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation.
基金financial support from the Equipment Pre-research Project(51312030507).
文摘This study investigates the fatigue crack propagation mechanism of a new high-strength and high-tough Ti-Mo-Cr-V-Nb-Al titanium alloy with three types of microstructures(basketweave structure,lamellar structure,and bimodal structure)through fatigue crack propagation rate tests and fatigue threshold value tests.The resistance of the alloy to fatigue crack propagation was found to be closely correlated with the morphology and distribution ofαparticles,as evidenced by microscopic examination of fracture surfaces and analysis of crack propagation paths.The primaryαparticles demonstrated superior resistance to crack propagation compared to the secondaryαparticles.The basketweave structure showed exceptional resistance to fatigue crack propagation at all stages.The lamellar structure mainly resists long crack propagation during rapid propagation,and its threshold value is the lowest,which makes it easy to produce microcrack propagation.On the contrary,the bimodal structure has the highest threshold value among the three,so its resistance to short crack growth is more excellent,but it has the highest crack growth rate in the higher stress intensity factor range.Theαparticles in the three microstructures also undergo rotational motion relative to the force axis during fatigue crack propagation,thereby adjusting the uneven stress distribution betweenα/βphases through slip behavior and further coordinating deformation.