期刊文献+
共找到387篇文章
< 1 2 20 >
每页显示 20 50 100
Enhanced physician prompts in prenatal electronic medical records impact documentation on smoking cessation
1
作者 Lisa D. Levine Jitsen Chang +1 位作者 Irwin R. Merkatz Peter S. Bernstein 《Open Journal of Obstetrics and Gynecology》 2013年第10期717-721,共5页
Objective: Smoking cessation during pregnancy is a modifiable intervention that can improve maternal and neonatal outcomes. Encouraging smoking cessation is an assessed measure of the Meaningful Use incentives to ensu... Objective: Smoking cessation during pregnancy is a modifiable intervention that can improve maternal and neonatal outcomes. Encouraging smoking cessation is an assessed measure of the Meaningful Use incentives to ensure best practices with the increased use of the electronic medical record (EMR). Physician EMR prompts have been used shown to be successful with preventive care but there is a paucity of data evaluating prompts within obstetrics. The objective of this study is to determine the effectiveness of enhanced smoking cessation prompts in a prenatal EMR. Methods: A retrospective cohort study of an enhanced smoking cessation prompting system within our prenatal EMR was performed. Pregnant women who reported tobacco use at first prenatal visit were included. The number of times a smoking cessation method was offered and documented, the number of documented attempts at smoking cessation, and the final number of cigarettes smoked were compared pre and post the enhancement of the smoking cessation prompting system. Results: 95 patients were included (48 pre-enhancement;47 post-enhancement). Post-enhancement, the documentation of smoking cessation method offered increased (0 vs. 1, p = 0.03) and documentation of smoking cessation attempts increased (1 vs. 2, p = 0.006). There was no change in the final number of cigarettes smoked (p = 0.9). Conclusions: Enhanced prompting systems increase documentation related to smoking cessation with no change in number of cigarettes smoked. In the era of Meaningful Use guidelines which focus on documentation in the EMR, continued research must be done to assure that software enhancements and improved documentation truly result in improved patient care. 展开更多
关键词 PRENATAL EMR PHYSICIAN prompts SMOKING CESSATION
暂未订购
Learning to compose diversified prompts for image emotion classification 被引量:2
2
作者 Sinuo Deng Lifang Wu +4 位作者 Ge Shi Lehao Xing Meng Jian Ye Xiang Ruihai Dong 《Computational Visual Media》 CSCD 2024年第6期1169-1183,共15页
Image emotion classification(IEC)aims to extract the abstract emotions evoked in images.Recently,language-supervised methods such as con-trastive language-image pretraining(CLIP)have demonstrated superior performance ... Image emotion classification(IEC)aims to extract the abstract emotions evoked in images.Recently,language-supervised methods such as con-trastive language-image pretraining(CLIP)have demonstrated superior performance in image under-standing.However,the underexplored task of IEC presents three major challenges:a tremendous training objective gap between pretraining and IEC,shared suboptimal prompts,and invariant prompts for all instances.In this study,we propose a general framework that effectively exploits the language-supervised CLIP method for the IEC task.First,a prompt-tuning method that mimics the pretraining objective of CLIP is introduced,to exploit the rich image and text semantics associated with CLIP.Subsequently,instance-specific prompts are automatically composed,conditioning them on the categories and image content of instances,diversifying the prompts,and thus avoiding suboptimal problems.Evaluations on six widely used affective datasets show that the proposed method significantly outperforms state-of-the-art methods(up to 9.29%accuracy gain on the EmotionROI dataset)on IEC tasks with only a few trained parameters.The code is publicly available at https://github.com/dsn0w/PT-DPC/for research purposes. 展开更多
关键词 image emotion analysis multimodal learning pretraining model prompt tuning
原文传递
AIGC动画创作中结构化Prompt工程与人工创意主导的协同机制研究
3
作者 林惠清 欧振武 《产业创新研究》 2025年第22期52-54,共3页
本文重在探索动画创作中人工创意与人工智能生成(AI-Generated Content,AIGC)技术的协同机制。实践表明,AIGC在文本创意阶段发挥着参照系与迭代加速器的功能,即通过Prompt生成剧本初稿并提供多维度评估,辅助创作者识别角色塑造薄弱、文... 本文重在探索动画创作中人工创意与人工智能生成(AI-Generated Content,AIGC)技术的协同机制。实践表明,AIGC在文本创意阶段发挥着参照系与迭代加速器的功能,即通过Prompt生成剧本初稿并提供多维度评估,辅助创作者识别角色塑造薄弱、文化表达浅层化等关键问题;而人工创意则主导文化内涵深度挖掘、情感共鸣构建与独特风格重塑,通过实地研学体验注入AI不可替代的人文视角。在动画生成层面,提出结构化Prompt工程框架:人工通过模块化设计,构建初始指令,以细节融合Prompt技术,突破风格同质化;同时运用“关键帧人工精控+AI插帧补间”策略,使初级创作者聚焦核心创意。最终确立“人类构想驱动技术实现”原则,即AIGC作为创意增强体,其价值实现依赖于人工构建的审美判断体系、原创保障机制及动态调试能力,二者形成深度耦合的创作共同体。 展开更多
关键词 人工创意主导 AIGC协同 Prompt工程
在线阅读 下载PDF
基于大语言模型的矿山事故知识图谱构建 被引量:3
4
作者 张朋杨 生龙 +2 位作者 王巍 魏忠诚 赵继军 《工矿自动化》 北大核心 2025年第2期76-83,105,共9页
现有矿山领域知识图谱构建方法在预训练阶段需要大量人工标注的高质量监督数据,人力成本高且效率低。大语言模型(LLM)可在少量人工标注的高质量数据下显著提高信息抽取的质量且效率较高,然而LLM结合Prompt的方法会产生灾难性遗忘问题。... 现有矿山领域知识图谱构建方法在预训练阶段需要大量人工标注的高质量监督数据,人力成本高且效率低。大语言模型(LLM)可在少量人工标注的高质量数据下显著提高信息抽取的质量且效率较高,然而LLM结合Prompt的方法会产生灾难性遗忘问题。针对上述问题,将图结构信息嵌入到Prompt模板中,提出了图结构Prompt,通过在LLM上嵌入图结构Prompt,实现基于LLM的矿山事故知识图谱高质量构建。首先,收集煤矿安全生产网公开的矿山事故报告并进行格式修正、冗余信息剔除等预处理。其次,利用LLM挖掘矿山事故报告文本中蕴含的知识,对矿山事故报告文本中的实体及实体间关系进行K−means聚类,完成矿山事故本体构建。然后,依据构建的本体进行少量数据标注,标注数据用于LLM的学习与微调。最后,采用嵌入图结构Prompt的LLM进行信息抽取,实例化实体关系三元组,从而构建矿山事故知识图谱。实验结果表明:在实体抽取和关系抽取任务中,LLM的表现优于通用信息抽取(UIE)模型,且嵌入图结构Prompt的LLM在精确率、召回率、F1值方面均高于未嵌入图结构Prompt的LLM。 展开更多
关键词 矿山事故 知识图谱 大语言模型 图结构Prompt 本体构建 信息抽取
在线阅读 下载PDF
从指令到结果:与DeepSeek高效互动
5
作者 付跃安 《师道(人文)》 2025年第9期6-7,共2页
作为国内大模型的典型代表,Deep Seek的有效应用离不开使用者对AI互动技巧的掌握,本文以Deep Seek(R1)为例,总结作者在使用Deep Seek中积累的经验,供广大读者参考。一、高效提问技巧1.构造高质量提示语对大模型的提问只有具体、清晰,大... 作为国内大模型的典型代表,Deep Seek的有效应用离不开使用者对AI互动技巧的掌握,本文以Deep Seek(R1)为例,总结作者在使用Deep Seek中积累的经验,供广大读者参考。一、高效提问技巧1.构造高质量提示语对大模型的提问只有具体、清晰,大模型才能给出满意的答复。提示语构造已经形成专门的领域——提示工程,并发展出多种提示构造方式,如COSTAR框架(情境、输出格式、要求和约束、任务示例、补充信息、限制条件)、PROMPT框架(角色、切中要点、输出目标、使命、具体要求、语气/目标对象)、CLEAR模型(简洁、逻辑、明确、适应、反思)等。 展开更多
关键词 DeepSeek 结果 指令 COSTAR框架 PROMPT框架 高效互动 提示工程
在线阅读 下载PDF
Empowering International Chinese Language Teaching with Artificial Intelligence
6
作者 John Yu 《国际中文教育(中英文)》 2025年第2期118-139,共22页
Artificial intelligence(AI)is advancing swiftly and integrating into various societal domains,including international Chinese language teaching.While AI provides diverse advantages,it also presents inherent risks,akin... Artificial intelligence(AI)is advancing swiftly and integrating into various societal domains,including international Chinese language teaching.While AI provides diverse advantages,it also presents inherent risks,akin to a“double-edged sword”.This paper delves into the challenges and opportunities associated with AI and suggests a strategy to transform AI from a potential adversary to an ally:not avoidance,but mastery.Mastery entails crafting targeted prompts suitable for distinct contexts to attain desired AI-driven outcomes.Ultimately,by presenting case studies across various proficiency levels in Chinese language instruction that utilize AI tools,this paper aims to stimulate constructive dialogue within the academic community of Chinese language teaching. 展开更多
关键词 artificial intelligence Chinese language teaching prompts
在线阅读 下载PDF
融合BERTopic和Prompt的学者研究兴趣生成模型——以计算机科学领域为例 被引量:1
7
作者 李豪 张柏苑 +3 位作者 邵蝶语 杨婧 杨波 石燕青 《情报科学》 北大核心 2025年第1期127-136,160,共11页
【目的/意义】学者研究兴趣是学者画像的关键特征,本研究通过识别学者研究兴趣的变化过程,能够帮助补齐学术履历,对构建完整的学者画像以及面向前沿需求的精准人才发现具有重要意义。【方法/过程】构建计算机科学领域论文文本语料库,训... 【目的/意义】学者研究兴趣是学者画像的关键特征,本研究通过识别学者研究兴趣的变化过程,能够帮助补齐学术履历,对构建完整的学者画像以及面向前沿需求的精准人才发现具有重要意义。【方法/过程】构建计算机科学领域论文文本语料库,训练BERTopic主题模型,进行领域研究主题挖掘和学者研究兴趣特征识别。创建Prompt,利用LLM进行主题词提取,结合主题模型分析结果,进行学者研究兴趣描述。【结果/结论】对于学者研究兴趣描述任务,相较基准模型,融合模型的ROUGE得分平均相对提升8.2%,BERTScore得分相对提升4.5%。通过层次分析法发现,BERTopic与LLM融合模型的学者研究兴趣识别效果优于其他评测模型,模型人工评测满意度达到81.4%。【创新/局限】所构建模型能够更好地识别学者研究主题,生成的学者研究兴趣描述文本质量较高。使用的语料库内中文语料占比较大,模型对外文成果的识别能力欠佳。 展开更多
关键词 研究主题挖掘 研究兴趣描述 BERTopic PROMPT LLM
原文传递
基于中国生肖文化基因的IP形象智能生成设计方法研究 被引量:5
8
作者 林茂丛 米高峰 《包装工程》 北大核心 2025年第2期238-250,共13页
目的 为实现中国生肖文化遗产的数字化保护与可持续设计创新,提出基于文化基因分析,以Prompt权重计算调控IP形象呈现的智能生成设计方法。方法 结合深度学习技术与文化基因理论,以层次分析法计算生肖IP形象智能生成设计的Prompt权重,并... 目的 为实现中国生肖文化遗产的数字化保护与可持续设计创新,提出基于文化基因分析,以Prompt权重计算调控IP形象呈现的智能生成设计方法。方法 结合深度学习技术与文化基因理论,以层次分析法计算生肖IP形象智能生成设计的Prompt权重,并根据优先级融入Midjourney图像生成过程,通过分组实验进行模糊综合评价检验效果。结果 该方法在智能生成设计中高效、有导向性地调节了生肖IP形象的视觉表征,使其符合文化内涵并具备系列感。结论 在使用智能生成设计工具时,应强调人机协同与专业把控。基于对生肖文化中“主体性”“间体性”与“时代性”基因的分析,创作者能够更精准地对Prompt排序及表述进行优化,以调控生肖IP形象智能生成设计结果,在新时代助力珍贵民俗文化的活态传承、永续发展。 展开更多
关键词 生肖文化基因 IP形象 智能生成设计 Prompt权重计算 层次分析法(AHP)
在线阅读 下载PDF
基于多提示学习的方面类别情感分析方法
9
作者 刘锦行 李琳 +1 位作者 吴任伟 刘佳 《计算机科学与探索》 北大核心 2025年第5期1334-1341,共8页
基于方面类别的情感分析(ACSA)旨在辨别评论文本中的方面类别,并同时预测它们的情感极性,是情感分析领域重要的细粒度子任务。近年来,基于预训练语言模型的微调(Fine-tuning)方法已经为方面类别情感分析提供了有效的解决思路。然而,由... 基于方面类别的情感分析(ACSA)旨在辨别评论文本中的方面类别,并同时预测它们的情感极性,是情感分析领域重要的细粒度子任务。近年来,基于预训练语言模型的微调(Fine-tuning)方法已经为方面类别情感分析提供了有效的解决思路。然而,由于预训练任务和下游情感分类任务目标不一致,影响了情感分析质量提升的空间。目前基于提示模板的提示学习(Prompt learning)能够对其进行相应缓解,但人工设计单一的Prompt文本为ACSA任务提供的上下文有限,缺少丰富性。针对此问题,提出了一种基于提示学习的方面类别情感分析方法(MultiPrompt_ACSA)。在提示学习的基础上进行了提示模板工程和答案工程的多样化设计,结合ACSA的研究特点,提出了适配方面类别情感分析的提示学习方法。引入自回归预训练语言模型进行训练。基于Prompt的多样化设计集成多个不同提示模板下的情感分类结果。与其他模型(非预训练、预训练和提示学习三个类别)在SemEval 2015和SemEval 2016数据集上的结果相比,提出的方法在F1指标上有良好的效果提升。 展开更多
关键词 方面类别情感分析 提示学习 Prompt多样化设计
在线阅读 下载PDF
基于Prompt打分的实体链接方法
10
作者 郭俊辰 马御棠 +2 位作者 相艳 赵学东 郭军军 《计算机工程》 北大核心 2025年第3期334-341,共8页
实体链接旨在将自然语言文本中的提及链接到知识库中相应的目标实体,主要面临提及和候选实体的表征能力有限,导致候选实体精确排序困难的问题,而现有的知识库扩展和图嵌入等提高表征能力的方法依赖外部数据或知识,限制了其应用。提出一... 实体链接旨在将自然语言文本中的提及链接到知识库中相应的目标实体,主要面临提及和候选实体的表征能力有限,导致候选实体精确排序困难的问题,而现有的知识库扩展和图嵌入等提高表征能力的方法依赖外部数据或知识,限制了其应用。提出一种实体链接中提及和候选实体精确排序的方法,通过结合提及上下文构建prompt问句,将提及和候选实体相似度计算转化为基于prompt问句的打分模式。通过预训练模型微调打分器,得到提及和候选实体相似度的打分,并综合候选实体发现阶段的得分,以筛选出更准确的目标实体。这一过程无需额外的知识,能够融合上下文信息,从而更准确地衡量提及和实体之间的相似度。在两个公共数据集上将该模型与基线模型进行实验比较,结果表明,相比次优模型,该模型Acc@1值分别提升了0.88和0.41百分点。 展开更多
关键词 实体链接 prompt问句 预训练模型 实体消歧 精确排序
在线阅读 下载PDF
融合大模型与图嵌入模型的领域知识图谱补全研究——以生物医学为例
11
作者 张君冬 严颖 +3 位作者 王震宇 刘江峰 刘艳华 黄奇 《现代情报》 北大核心 2025年第10期39-50,共12页
[目的/意义]为提高领域知识图谱补全性能,解决现有图嵌入模型“语义理解不足”和大模型“生成偏差及计算资源浪费”并存的挑战,本文提出了一种融合大模型与图嵌入模型的领域知识图谱补全框架。[方法/过程]首先,对开源大模型进行领域语... [目的/意义]为提高领域知识图谱补全性能,解决现有图嵌入模型“语义理解不足”和大模型“生成偏差及计算资源浪费”并存的挑战,本文提出了一种融合大模型与图嵌入模型的领域知识图谱补全框架。[方法/过程]首先,对开源大模型进行领域语料的深度预训练,增强大模型在知识图谱补全时对领域术语的理解力;其次,通过传统图嵌入模型在知识图谱已有结构的基础上生成候选关系或实体,为后续利用大模型进行知识图谱补全提供高质量候选集;第三,基于不同Prompt提示词策略引导前期训练完成的领域大模型完成候选项的排序,实现知识图谱的高效补全;最后,以生物医学领域现有数据集开展实证研究,验证其可行性。[结果/结论]实验结果表明,本研究提出的方法在多个评价指标上效果显著,可为后续领域知识图谱补全提供新的思路与技术手段。 展开更多
关键词 知识图谱 大语言模型 知识图谱补全 图嵌入模型 Prompt提示词
在线阅读 下载PDF
基于Chinese-CLIP模型和Prompt提示机制的图文检索方法 被引量:1
12
作者 陈道彬 张子诺 +2 位作者 付裕彬 黎晋铭 林彬 《现代信息科技》 2025年第6期130-134,共5页
为提升图像文本匹配任务的准确率,提出了一种基于Chinese-CLIP模型和Prompt提示机制的图文检索方法。一方面,对文本数据进行预处理,去除停用词和标点符号后,利用BERT模型提取文本特征;另一方面,使用卷积神经网络提取图像特征,并将得到... 为提升图像文本匹配任务的准确率,提出了一种基于Chinese-CLIP模型和Prompt提示机制的图文检索方法。一方面,对文本数据进行预处理,去除停用词和标点符号后,利用BERT模型提取文本特征;另一方面,使用卷积神经网络提取图像特征,并将得到的文本与图像特征进行序列化,以实现多模态特征融合。模型训练时,先使用Chinese-CLIP大模型进行初步训练,再引入Prompt提示机制对模型进行微调。实验结果表明,所提方法在文搜图和图搜文两个任务上均有效地提升了准确率与召回率。 展开更多
关键词 图文检索 多模态特征融合 Chinese-CLIP模型 Prompt提示机制
在线阅读 下载PDF
Adversarial Prompt Detection in Large Language Models:A Classification-Driven Approach
13
作者 Ahmet Emre Ergün Aytug Onan 《Computers, Materials & Continua》 2025年第6期4855-4877,共23页
Large Language Models(LLMs)have significantly advanced human-computer interaction by improving natural language understanding and generation.However,their vulnerability to adversarial prompts–carefully designed input... Large Language Models(LLMs)have significantly advanced human-computer interaction by improving natural language understanding and generation.However,their vulnerability to adversarial prompts–carefully designed inputs that manipulate model outputs–presents substantial challenges.This paper introduces a classification-based approach to detect adversarial prompts by utilizing both prompt features and prompt response features.Elevenmachine learning models were evaluated based on key metrics such as accuracy,precision,recall,and F1-score.The results show that the Convolutional Neural Network–Long Short-Term Memory(CNN-LSTM)cascade model delivers the best performance,especially when using prompt features,achieving an accuracy of over 97%in all adversarial scenarios.Furthermore,the Support Vector Machine(SVM)model performed best with prompt response features,particularly excelling in prompt type classification tasks.Classification results revealed that certain types of adversarial attacks,such as“Word Level”and“Adversarial Prefix”,were particularly difficult to detect,as indicated by their low recall and F1-scores.These findings suggest that more subtle manipulations can evade detection mechanisms.In contrast,attacks like“Sentence Level”and“Adversarial Insertion”were easier to identify,due to the model’s effectiveness in recognizing inserted content.Natural Language Processing(NLP)techniques played a critical role by enabling the extraction of semantic and syntactic features from both prompts and their corresponding responses.These insights highlight the importance of combining traditional and deep learning approaches,along with advanced NLP techniques,to build more reliable adversarial prompt detection systems for LLMs. 展开更多
关键词 LLM CLASSIFICATION NLP adversarial PROMPT machine learning deep learning
在线阅读 下载PDF
Gov_GLM:基于ChatGLM的政务助手系统
14
作者 蒙醒 陈亮 王珺琳 《通信与信息技术》 2025年第2期130-135,共6页
近年来,生成式大型语言模型在人工智能领域取得了显著的技术进展。因其在自然语言处理和文本分析方面的强大能力得到包括政务在内的多个领域的广泛应用。然而,国家政策涉及复杂逻辑知识和解释性问题使用户难以解读。针对这些问题,通过使... 近年来,生成式大型语言模型在人工智能领域取得了显著的技术进展。因其在自然语言处理和文本分析方面的强大能力得到包括政务在内的多个领域的广泛应用。然而,国家政策涉及复杂逻辑知识和解释性问题使用户难以解读。针对这些问题,通过使用Lora方法对ChatGLM模型进行重参数化微调,增强模型政务知识处理能力,并构建相应Prompt以优化模型问答意图理解能力。实验研究表明,问答系统的准确性和完整性均高于对比模型。通过在自制政务服务问答对话数据集上验证,Gov_GLM的BLEU分数达到75.2%,模型的准确性提高,显著降低系统问答结果的复杂度,辅助用户更好地解读政务信息。 展开更多
关键词 ChatGLM 政务问答 Lora方法 PROMPT BLEU
在线阅读 下载PDF
Integrating Speech-to-Text for Image Generation Using Generative Adversarial Networks
15
作者 Smita Mahajan Shilpa Gite +5 位作者 Biswajeet Pradhan Abdullah Alamri Shaunak Inamdar Deva Shriyansh Akshat Ashish Shah Shruti Agarwal 《Computer Modeling in Engineering & Sciences》 2025年第5期2001-2026,共26页
The development of generative architectures has resulted in numerous novel deep-learning models that generate images using text inputs.However,humans naturally use speech for visualization prompts.Therefore,this paper... The development of generative architectures has resulted in numerous novel deep-learning models that generate images using text inputs.However,humans naturally use speech for visualization prompts.Therefore,this paper proposes an architecture that integrates speech prompts as input to image-generation Generative Adversarial Networks(GANs)model,leveraging Speech-to-Text translation along with the CLIP+VQGAN model.The proposed method involves translating speech prompts into text,which is then used by the Contrastive Language-Image Pretraining(CLIP)+Vector Quantized Generative Adversarial Network(VQGAN)model to generate images.This paper outlines the steps required to implement such a model and describes in detail the methods used for evaluating the model.The GAN model successfully generates artwork from descriptions using speech and text prompts.Experimental outcomes of synthesized images demonstrate that the proposed methodology can produce beautiful abstract visuals containing elements from the input prompts.The model achieved a Frechet Inception Distance(FID)score of 28.75,showcasing its capability to produce high-quality and diverse images.The proposed model can find numerous applications in educational,artistic,and design spaces due to its ability to generate images using speech and the distinct abstract artistry of the output images.This capability is demonstrated by giving the model out-of-the-box prompts to generate never-before-seen images with plausible realistic qualities. 展开更多
关键词 Generative adversarial networks speech-to-image translation visualization transformers prompt engineering
在线阅读 下载PDF
人工智能生成内容(AIGC)在高等数学个性化教学中的应用——以ChatGPT在“直角坐标系下二重积分的计算”教学中的应用为例
16
作者 潘益庆 何其涵 《广西教育》 2025年第27期56-60,共5页
人工智能生成内容(AIGC)不仅是一种互联网技术,而且是一种推动教育范式变革的关键力量,它的出现给教师的教学方法和学生的学习方式带来了很大的影响,如可以通过prompt(提示词)利用ChatGPT进行个性化教学。以ChatGPT在“直角坐标系下二... 人工智能生成内容(AIGC)不仅是一种互联网技术,而且是一种推动教育范式变革的关键力量,它的出现给教师的教学方法和学生的学习方式带来了很大的影响,如可以通过prompt(提示词)利用ChatGPT进行个性化教学。以ChatGPT在“直角坐标系下二重积分的计算”教学中的应用为例,以ChatGPT为代表的AIGC工具能够重塑高等数学教学模式、提升学生学习体验、培养学生自主学习能力。 展开更多
关键词 个性化教学 AIGC ChatGPT PROMPT 二重积分 积分区域
在线阅读 下载PDF
Large language model-based multi-objective modeling framework for vacuum gas oil hydrotreating
17
作者 Zheyuan Pang Siying Liu +4 位作者 Yiting Lin Xiangchen Fang Honglai Liu Chong Peng Cheng Lian 《Chinese Journal of Chemical Engineering》 2025年第8期133-145,共13页
Data-driven approaches are extensively employed to model complex chemical engineering processes, such as hydrotreating, to address the challenges of mechanism-based methods demanding deep process understanding. Howeve... Data-driven approaches are extensively employed to model complex chemical engineering processes, such as hydrotreating, to address the challenges of mechanism-based methods demanding deep process understanding. However, the development of such models requires specialized expertise in data science, limiting their broader application. Large language models (LLMs), such as GPT-4, have demonstrated potential in supporting and guiding research efforts. This work presents a novel AI-assisted framework where GPT-4, through well-engineered prompts, facilitates the construction and explanation of multi-objective neural networks. These models predict hydrotreating products properties (such as distillation range), including refined diesel and refined gas oil, using feedstock properties, operating conditions, and recycle hydrogen composition. Gradient-weighted class activation mapping was employed to identify key features influencing the output variables. This work illustrates an innovative AI-guided paradigm for chemical engineering applications, and the designed prompts hold promise for adaptation to other complex processes. 展开更多
关键词 HYDROGENATION Prompt engineering Large language model Neural networks Prediction
在线阅读 下载PDF
Transactions of Nanjing University of Aeronautics and Astronautics Information for Contributors
18
《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期F0003-F0003,共1页
Transactions of Nanjing University of Aeronautics&Astronautics (TNUAA) is a bimonthly journal facing international academic community.Emphasizing prompt and effective dissemination of key data and new scientific i... Transactions of Nanjing University of Aeronautics&Astronautics (TNUAA) is a bimonthly journal facing international academic community.Emphasizing prompt and effective dissemination of key data and new scientific insights,TNUAA publishes experimental and theoretical papers bearing on applications to all branches of aeronautics,astronautics and civil aviation. 展开更多
关键词 PROMPT AVIATION journal
在线阅读 下载PDF
Commentary
19
作者 Darío Luis Banegas 《Chinese Journal of Applied Linguistics》 2025年第1期109-113,共5页
In December 2023,I was part of a doctoral viva at the University of Edinburgh,and one colleague reminded us of the novelty effect notion in education.In a nutshell,this term refers to individuals or institutions quick... In December 2023,I was part of a doctoral viva at the University of Edinburgh,and one colleague reminded us of the novelty effect notion in education.In a nutshell,this term refers to individuals or institutions quickly embracing a process,idea or product,because it is perceived and experienced as innovative and beneficial,but as time passes by,the novelty becomes normalized and interest begins to decrease.For example,this effect has been examined in relation to digital technologies in education(e.g.,Jeno et al.,2019;Tsay et al.,2020).The discussion that ensued in the viva lingered in my head for a few days as it prompted me to reflect on the influence that content and language integrated learning(CLIL)continues to have around the world.In other words,research and practice have demonstrated that CLIL has overcome the novelty effect,and this special issue attests to it. 展开更多
关键词 CLIL Edinburgh PROMPT
在线阅读 下载PDF
TIPS:Tailored Information Extraction in Public Security Using Domain-Enhanced Large Language Model
20
作者 Yue Liu Qinglang Guo +1 位作者 Chunyao Yang Yong Liao 《Computers, Materials & Continua》 2025年第5期2555-2572,共18页
Processing police incident data in public security involves complex natural language processing(NLP)tasks,including information extraction.This data contains extensive entity information—such as people,locations,and ... Processing police incident data in public security involves complex natural language processing(NLP)tasks,including information extraction.This data contains extensive entity information—such as people,locations,and events—while also involving reasoning tasks like personnel classification,relationship judgment,and implicit inference.Moreover,utilizing models for extracting information from police incident data poses a significant challenge—data scarcity,which limits the effectiveness of traditional rule-based and machine-learning methods.To address these,we propose TIPS.In collaboration with public security experts,we used de-identified police incident data to create templates that enable large language models(LLMs)to populate data slots and generate simulated data,enhancing data density and diversity.We then designed schemas to efficiently manage complex extraction and reasoning tasks,constructing a high-quality dataset and fine-tuning multiple open-source LLMs.Experiments showed that the fine-tuned ChatGLM-4-9B model achieved an F1 score of 87.14%,nearly 30%higher than the base model,significantly reducing error rates.Manual corrections further improved performance by 9.39%.This study demonstrates that combining largescale pre-trained models with limited high-quality domain-specific data can greatly enhance information extraction in low-resource environments,offering a new approach for intelligent public security applications. 展开更多
关键词 Public security information extraction large language model prompt engineering
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部